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ABSTRACT 

In this article we  present a self-contained account of  the  recent 

theory of micropolar elasticity.    Micropolar elastic materials,   roughly 

speaking,  are the  classical  elastic materials with  extra independent degrees 

of   freedom for  the  local  rotations.     These materials   respond  to spin inertia 

and body and surface  couples,   and  as  a consequence  they  exhibit  certain new 

static  and dynamic effects,   e.g.,  new  types  of waves   and  couple  stresses- 

The   theory  is  fully deterministic as  against  the background of  the  recently 

popular  indeteiministic couple  stress   theory   (cf.  Art     23).     The mechanics 

of  certain  classes  of materials with  fiberous  and elongated  grains   (e.g  , 

dumbbell  types   '     0rains)   represents  a potential  field of  application of  the 

theory. 

The  geometry of deformation and its  measures   are  introduced on a more 

effects 
general background of materials  exhibiting granular  and microstructure^Cmicro- 

morphic materials).    Various   types  of microstralns  and microrotations  are 

discussed.     Compatibility  conditions  for  the micropolar  strains  are  derived 

The  kinematics  of strains,  microstralns  and  rotations   are  presented      Basic, 

laws  of motion,   conservation  of  mass,   conservation of  microlnertia,  balance 

of  momentum,  balance of  moment of momentum,   conservation of  energy  are  postu- 

lated  and  their  local  forms   are obtained.     The  thermodynamics  of  micropola- 

solids  Is  formulated and  the   consequences  of   the  entropy  inequality  are 

discussed.     Constitutive equations  are  found  for  the   linear  theory of micro- 

polar elasticity.     The basic   field equations  and initial  and boundary  conditions 

are  given. 

The  indeterminate  couple stress   theory is  shown   to  result   as  a special 

case  of  the  theory when  the  motion  is  constrained.     Several static  and dynamic 

problems  are solved  to  reveal   seme  ot   the  new physical  phenomera exhibited by 
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the  theory.    These include propagation of waves  in infinite micropolar 

elastic solids,  reflection of various  types of micropolar waves in a 

half space, surface waves,  the stress concentration around a circular 

hole  in  a  tension field,  and force  and moment singularities  in an infinite 

solid.     The Papkovitch and Galerkin representations are presented. 

The  article is based mostly on the works of Eringen and his co-workers 

published  during the  past several  years.       Many parts,  however,   contain new 

compositions and several other results are presented for  the first time. 
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1.  INTRODUCTION 

Classical continuum mechanics is based upon the fundamental idea 

that all material bodies possess continuous mass densities, and that the 

laws of motion and the axioms of constitution are valid for every part 

of the body no matter how small they may be. Accordingly, a small volume 

AV enclosed within a surface AS possesses a mass density p defined by 

(1.1) lim Am 
P ' AV -0 AV 

where Am is the total mass contained in AV. Here p is Independent of the 

size of AV and depends only on the position vector x of a point in AV and 

time t. Consider the following experiment for the measurement of p: The 

mass density of a homogeneous material may be calculated approximately by 

weighing a large number of pieces having different volumes and calculating 

the ratio Am/AV for each piece.  If the resulting numbers p are plotted 

against AV, one finds that this ratio is nearly constant when AV is greater 

than certain critical volume AV and begins to show dependence on AV when 

AV < AV . The size of AV depends on the constitution of the material.  As 

AV approaches zero, this dependence becomes violent. Fig. 1.1.  This situa- 

tion is well-understood when we remember the granular and molecular nature 

of materials. The classical continuum theory may therefore not represent 

a good mathematical model for the approximation of a physical theory In the 

range AV < AV , 

The loss of accuracy in classical continuum mechanics may stem from 

another important reason.  If the response of the body is sought to an external 

physical effect in which the length scale is comparable to the average grain 

or molecular size contained in the body, the granular or molecular constituents 
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of  the body are exited individually.    In this case,   the intrinsic motions 

of   the  constituents   (microelements)  must be  taken  into account.     This point 

becomes  clear especially  in  connection with  the propagation of waves having 

high  frequencies or short wave  lengths.     When  the wave  length  is  of  the same 

order of magnitude  as  the  average dimension of  the microelements,   the  intrinsic 

motions  of  the microelements  of  AV with  respect  to  the  center of  mass  of AV 

can  affect  the outcome  appreciably.     This  situation previals  in practical 

applications when  the material  under consideration  is  a composite  material 

containing macromolecules,   fibers,   and  grains.     For  such materials,   the  critical 

volume AV    is of  the order  of magnitude  of  the  cube  of  a  fraction of an inch 

to several inches.     Solid  propellant grains,  polymeric materials,  and fiberglas 

are but a few examples  for  such materials. 

Another example is   the  anomalous  behavior of  blood when  flowing  through 

capillaries.     Blood  consists  of  a fluid  (plasma)   in which are dispersed elements 

of  microscopic dimensions   (corpuscles).     When blood  flows  through  capillaries 

whose diameter is  comparable  to  that  of  the  corpuscles,   the  flow  characteristics 

differ  from those  for  large  vessels.     As  a  further  example,  experiments have 

shown  that  the  resistance  of  a solid  to surrounding  fluid can be  reduced by  as 

much  as  1/3 when a minute   amount of  additives  are  cast  into fluid. 

It may be  conjectured  that  a rational  treatment  of surface  tension,   micro- 

cracks,  microfracture,   and  the mechanics  of  granular  media and composite materials 

ultimately will have  to be based on the  theory of microcontinua.     The nature of 

experimental work on the  properties of  such materials,  no doubt,  will be  affected 

with  these  developments. 

Presently  there  exist  several  approaches   to  the  formulation of micro- 

mechanics.     Some of  these   theories  are  very  general  in nature but  incomplete 

and not  closed.     Others  are  concerned either with  special  types  of material 

structure  and/or deformations.     Fundamental  ideas   contained in some of  these 

theories  can be  traced all   the way   to  Bernoulli  and  Euler in  connection with 
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their work on beam theories.     In  the elementary beam theory,  with each  section 

of  the bar  there is   associated  two sets  of kinematical quantities,  namely, 

a deformation vector and a rotation vector and  two types of Internal  loads, 

namely,   the  tractions   and couples.     In plate  theory, we have  a similar 

situation.     Bar and  plate  theories  involving  these  independent quantities 

were  recorded by Kelvin  and Tait[1879].     The  existence  of  the  stress   couples 

independent of tractions  is essential  to these  theories      For three-dimensional 

bodies,   this  concept  is   found in the work of MacCullagh   [1839]  in connection 

with his work on optics.     Lord Kelvin went  as   far as building a model  of what 

he  called  "quasi-rigid"  ether which  is  supposed  to provide  a mechanical  model 

for Maxwell's  theory  of  electromagnetism.    The  existence  and basis  of   couple 

stress  in elasticity was  also noted by Voigt   [1887]  in  connection with  polar 

molecules. 

In  a remarkable  monograph,   E.   and F.   Cosserat  [1909]   gave a unified 

theory  for  the deformable bars,  surfaces,  and bodies.     A Cosserat  continuum 

is  defined  as  a three-dimensional  continuum,   each point of which  is  supplied 

1 2 with  a  triad  .     By  the  use of a principle which   they  call  "euclidean  action" 

and by  calculating  the  variation of  the  internal  energy density,   they   gave 

the equations of  local balance of  momenta  for stress  and  couple stress   and 

the expressions of  surface  tractions   and couples.     In  the work of  the  Cosserat 

brothers,  we  find  that   the effect of  couple  stress  en  the  motion of  deformable 

bodies  is  fully  taken  into  account. 

Some  fifty years  elapsed after  the work  of   the Cosserats with  very  little 

activity  in  this  field.     The  idea  of  a Cosserat   continuum was   revived  in various 

In  the   terminology  of  Truesdell  and Noll   [1960,  Art    256]   "directors",   the 
same   terminology  and similar ideas were used by Tcapin   [1964],  Green,   Rivlin 
and Naghdi   [1965]. 

2 
Equivalent  to the  principle of  objectivity,   ct.   Enngen   [1962,  Art.   27]. 
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special forms by GUnther   [1958],  Grioli   [I960],  Aero and Kuvshinskli   [1961], 

and Schäfer   [1962]  of whom GUnther also  remarked  on  the  connection  to  the 

theory of dislocations.     The question of couple stress was  reopened with 

an incomplete  theory of  Cosserat bars   and surfaces   included in  Truesdell 

and Toupin   [1960].    Mindlin  and Tiers ten   [1962],   Toupin  [1962],   Eringen 

[1962,  Arts.   32,  40]  recapitulated  a special Cosserat continuum now known 

as  the   (indeterminate)   couple stress   theory.     In   these  theories,   the   rotation 

vector  is not  an independent vector,   consequently   the antisymmetric  part of 

the  stress  and symmetric  part of  the   couple stress   remains  undetermined 

(cf.  Art.  23  below).    Eringen  and Suhubi   [1964a,b]   and bringen   [1964   ]  intro- 

duced  a general  theory of  a nonlinear microelastic   continuum in which   the 

balance  laws   of continuum mechanics   are supplemented with  additional  ones, 

and  the  intrinsic motions  of  the microelement contained in macrovolume AV 

are  taken into account.     This   theory,   in special  cases,  contains   the  Cosserat 

continuum and  the  indeterminate  couple  stress  theory.     Independently,   a micro- 

structure theory of elasticity was published by Mindlin  [1964]   and a multipolar 

continuum theory by Green  and Rivlln   [19641.     Botn   of  these  theories  appear 

to have  contacts with  these of Eringen  and  Suhubi,   in special  situations, 

Following these works,  an  intense activity began and  literature now contains 

several  hundred papers  in   this  and in  related  fields      A proper  assessment 

of   these works with  appropriate  references  is beyond  the scope  of  this  article. 

This  article  is  concerned,  basicially, with  special   types  of continua 

called  micropolar  continua.     The  thecry was  initiated by Eringen  and  Suhubi 

[19b4b,  Art.   6 ]  as   a special  case of   their work  on   the microelastic solid 

and was  named   couple stress   theory.     Later,  Eringen   [1966a,b]  recapitulated 

and   renamed  it  micropolar   theory   and  proved  several   uniqueness   theorems.     A 

similar  theory  appears  to be  given,  independently,   by  Palmov   [1964]  for  the 
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linear elastic solid.     While  the   theory   is  fresh and no experimental work 

has   been  published as  yet,  we believe  that  the  results obtained  so  far  are 

sufficient  to strengthen  the  future of  the  theory. 

The  theory  of micropolar elasticity is  concerned with material media 

whose constituents are  dumbbell molecules.     These elements  are allowed  to 

rotate independently without   stretch      The  theory is  expected to   find appli- 

cations  in  the   treatment of  mechanics of   granular materials with   elongated 

rigid grains  and   composite  fiberous  materials. 

The  first  eight  sections  (Arts.  2   - 9)   of  this  article give  a treat- 

ment  of  the geometry of deformation and microdeformation,  strain  and rotation 

measures,   compatibility  conditions,  and  some illustrative examples   of deformation. 

Sections  10 -  13  are devoted   to kinematics  and  rate  measures.     External  and 

internal  loads   and  the  balance laws  are  discussed in  Sections  14   to 17,   and 

energy and entropy in Sections  18 and 19.     The  constitutive equations of   the 

theory of micropolar elasticity and  restrictions  on  the  coefficients are 

derived in Sections 20  and 21.    The   field  equations,   boundary and   initial 

conditions   are  prescribed and  discussed  in  Section 22.     In  Section  23, we 

show how the indeterminate couple stress   theory  arises  as  a special  case  of 

the  micropolar  theory.     Sections 24  through 29  are devoted  to  the  solutions 

of various  problems. 

Micropolar  continuum mechanics  is   in the  stage  of  its   infancy.    The 

linear theory is   reasonably  simple  and it   lends  itself  to the solution of 

some  important boundary  and  initial  value   problems.     A  large  class   of unsolved 

problems  and experimental work offer a challenge  to  future workers. 
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2.     DEFORMATION  AND MICRODEFORMATION 

A  material point P of  a body B having volume  V and surface S  in  its 

undeformed and unstressed state may be  located by its  rectangular coordinates 

X   ,   X    and X     (or simply \,   * m   M.S),  Fig.   2.1.     If  the body  is  allowed 

to  move  and deform under some external  loads,   it will  occupy a  region 

having volume  V and having  surface S.     Referred  to  the same  rectangular  frame 

of   reference,   the new  position of  the  point P will be  x1,   x  ,  x     (or  simply 

x, ,   k ■  1,2,3).    Under  the  assumption of Indestructibility  and  impenetrability 

of  matter, each material point in  the  undeformed body  B will occupy  a  unique 

position   in the  deformed body B. 

Conversely, each point in t' can be traced back, to a unique point in B. 

Thus, the deformation of the body at time t may be prescribed by a one-to-one 

mapping 

(2.1) x,    ■   x. (X^ ,X2 ,X_ , t), 1,2,3 

or   its  inverse motion 

(2.2) L  ■   X^(x.,X2,X-,t), 1,2,3 

We  assume   that   (2.2)   is  a unique  inverse of   (2.1)  for  all  points  contained in 

the  body  except possibly some singular  surfaces,  lines,and points.     For  this 

to be valid,  the three  functions   x. (X.,X„,X_,t)  must  possess continuous  partial 

derivatives with respect  to  X.,   X.^and X.  for  all  times, and  the  jacobian 

is 
äx„ «3 

(2.3) J  = det Ü 
\ 

 ^ 
ax. 

3X, 

ax. 
3X- 

ax. 

»X, 

ax" 
!5 
•X, 

3xq 

ax. 
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must not vanish.     Henceforth, we assume this to be the  case. 

The  partial   derivatives 

(2,4) VK = 3L      '      h,k '' RL 

are  called  deformation  gradientst and   they  are basic in  the study of   continuum 

mechanics. 

We now  consider a  volume element AV  enclosed within its  surface  AS  in 

the undeformed body.     Let  the   center  of mass of  AV have  the  position  vector X. 

All materials  possess  certain  granular and   fibrous  structure with different 

sizes  and shapes.     If the physical  phenomena under study has   a  certain  charac- 

teristic length  (such as  wave   length)   that   compares with  the  size of   prains 

in the body,   then  the microstructure   of the  material must be   taken  into consid- 

eration.     In  such situations,   classical continuum mechanics  must be modified 

by considering the  effect  of the granular character of  ti^e medium.     Suppose 

that  the element AV + AS  contains N  discrete micromaterial elements  AV        + AS       , 

(a ■  1,2,...N),  each with  a mass density p        .     The position vector of a 

material point in a      microelement may be expressed as 

(2.5) X(a)   -  X+   E(a) 

-(a) 
where  =        is   the  position of  a point   in the  microelement  relative  to   the 

center  of mass of  AV + AS,  Fig.   2.2.     Upon  the deformation of   the body, 

AV + AS  goes   into Av + As with  the microelement  displaced with   respect  to 

the mass  center.     Because  of  the  rearrangements  and  the  relative deformations 

of  the  microelements,   the   center of mass P may now move   to a position  p and 

the material  point  Q  to a new position  q in   the  deformed body.     The  final 

position of   the a       particle will therefore  be 

(2.6) x(a)   - x+   C(a) 
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where x is the new position vector of the center of mass of Av and £ is 

the new relative position vector of the point originally located at X . 

The motion of the center of mass P of AV is expressed as usual by (2.1) or 

simply 

(2.7) x - x(X,t) 

The relative position vector C   however depends not only on X and t but 

also on r  , i.e. , 

(2.S) E^ . C(a) (X.E(a).t) 

A microstructure theory must lean heavily on the assumption charac- 

terizing the nature of the functional character of i       .  Eringen and Suhubi 

[1964a,b] and Eringen [1964] have constructed a general cneory in which (2.8) 

is linear in E  .  The theory so constructed was later called by Eringen 

the theory of micromorphic materials.  The basic assumption underlying this 

theory is the 

Axiom of Affine Motion.  The material points in AV + ^S undergo ji 

homogeneous deformation about the center of mass, thus, 

C(a) - x1(X,t)E
(
i
a) + x2(X.t)E(2

a) + X3(X,t)5(3
a)     ,    a - 1,2,...N 

or simply 

(2.9) t(a) . XK(X.t)-.K
(a) 

where  sununation over  repeated  indices  is  understood      This  assumption is  justi- 

fiable  on  the  physical grounds   that when AV + AS   is  small enough,   its motion 

consists of  a^ translation.  £ rotation  about   its  center of mass,   and  a^ homogeneous 

deformation.     Note   that  in  all  classical  theories  of  continuous  media,   this  last 

assumption is  missing  (cf.   Eringen  [1962,  Art.   10 1). 
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Clearly,   the  theory  can be extended  to include quadratic  and higher order 

terms  in H       .     However,   it quickly  takes  a very  complex  form,   losing its 

simplicity  and  usefulness.     In   this  article,   in fact, we  shall  be  concerned 

mostly with  a much  simpler  case,   namely,   the   theory of  micropolar  elasticity   . 

This  latter  theory  admits  only   rigid raicrorotations  of  the micro- 

volume  elements  about the  center  of  mass of  the volume element.     In  other 

words,   the basic assumption   (2.9)   is   further simplified by placing  further 

restrictions  on the  three vector   functions   x,,-    As we  shall see  later,   this 
'is. 

will  amount  to  reducing  the number of   the microdeformation  functions   x,,  from 

three  to one.     In fact, we shall  also be  dealing mainly with  the  linear  theory. 

In classical  continuum mechanics,   the  problem is  centered  around  the  determina- 

tion of   the spatial  position     x    of  all material points  of  the  body  at  a given 

instant.     This  means  that when we  are   through witii  all  calculations,  we will 

have  the   three  functions     x^(X,t)     determined.     In  the  theory of  micromorphic 

materials,  in  addition  the   three  vector  functions     x,,(X,t)   (equivalently 

nine scalar  functions)  •nust  also be  determined.     The  complicated nature of 

the problem and  the  necessity  of  additional  physical  concepts  and  laws  are 

now apparent. 

In  coordinate  form for  the  spatial position of  a material  point  in a 

microelement,  we have 

(2.10) x^  -   ^(X.t)   ♦  xkK(X,t)^a), k,K =   1,2,3 

It is now clear that we have  3 + 9 =   12   functions,  x^(X,t)   and  x. ^(X.t),  to 

determine  the  spatial position  of  the   a      material point  x^ 

J iSt  as   in  (2.2),  we  introduce   the  inverse  nucromutions   X      such  that 

The   theory was  developed  in  the  original  paper ot   Eringen and  Suliubi   [l%4b, 
Sec.   6]   as  a special case of   the  general   theory  and was   called  the   couple 
stress   theory.     Eringen   [1965]   later named  it  the micropolar   theory. 
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Here  and  throughout  this  article,  sununation  is understood  to be over  the 

repeated indices,   e.g., 

VlU       XklXU +   Xk2X2i +  Xk3X3i 

The   symbols   4      and 6       are   the Kronecker deltas which   are 1 when 

the  indices   take   tue same numerical  value  and  zero otherwise. 

In component  form  (2.9)   reads 

(2.12) ^a)   -   xkK(X,t)5^0l) 

Upon multiplication of both sides by  >C.   and using  (2.11), we  also get 

(1.13) >' . V».«^ 

In vector form this  reads 

(2.14) E(a)   -  ^(».t)^ 

The  rectangular  components of   X^  are  denoted by X      and   those  of  xK 

by XkK,   i.e. , 

(2.15) XK-   XkK(X.t)ik . ^-^(«.t)!, 

where  I    and  i,   are,  respectively,   the  unit  base vectors for  the material 

coordinates   JC, and   the  spatial   coordinates   x^. 

The motion  and  the  Inverse motion of  a material point   in a micro- 

element are   therefore expressed by 

(2.16) x^a)   -  «jjUit)   ♦   XkK(X,t)^0) 

(2.17) X^a)   - ^(K.t)   +  X
Kk

(x'tKka) 
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In vectorlal form these read 

(2.18) x(Ql) - x(X,t) + xKa,t)4a) 

(2.19) X(0l) - X(x,t) ♦ Xk(x.t)^a) 

It is clear that we may employ either representations (2.16) or 

(2.17), .»nd that whenever either set of functions (ViXi^) or (^»■^vi,) 

are determined, the problem is completed since the other set is soluble 

from the  one  that is   found. 
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3.     STRAIN AND MICROSTRAIN TENSORS 

The differential line  element  in  the  deformed body  is   calculated 

through   (2.18) 

(3.1) ■'?(a)-<?.K+*LiK^>)dXK+*KdH'<0 

where an index followed by a comma denotes partial differentiation.  This 

convention will be used throughout this article.  Thus, for example, 

9x _ ^L 
(3.2) -'K ' -W^     '     ^L,K ' 3^ 

3X »fl 

are used  for brevity.     Note   that   (3.2).   and  (3.3).   are   the  classical defor- 

mation  gradients,   and  (3.2)„  and  (3.3).  are  the microdeformation gradients 

of  the  present   theory. 

The  square of   the arc  length  is now  calculated by  forming 

,.   (a) .2        .   (a)        .   (a) 
(ds       )     =  dx •   dx 

Upon using  (3.1)  and  forming  the  scalar product,  we  find 

O.*)     (ds(a))2 - (cKL ♦ 2 r^E,^ ♦ xkM>K xkN(LVN) «K^L 

+   2(V  +   \LXkM,K=M)   dXKd5L 

+   XkKXkLd::KdrL 

where we   also dropped  the superscript  a on   -    and d=     for brevity,   since 

this  is   understood whenever we  use   the  letter  ;(and also  ()•     In  (3.4) 
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we  introduce  the notations 

Of these,   C,,,   is  the  classical  Green  deformation  tensor  and  V 

and T^, w are new mlcrodeformation  tensors  of   the  present  theory. 1CLM ^^__^—^_—-^^ .^__^_ 

We now introduce  the displacement vector u as   the vector  that 

extends  from X(a)   to *       ,   Fig.   (3.1).     Thus  we write 

(3.8) u(a)  -x-X+C-E-u+S-E 

where 

(3.9) u   .   x - X 

is  the   classical  displacement vector,   the  components of which  in X^  and x, 

are,   respectively, 

(3-10) \'u- h' \\K - h 

where 

(3-12) 6kK  ^   6Kk  'h'h 

Since   the spatial  and material   frames  are   taken  to be  the  same   rectangular 

frame  of  reference, 6,     is  none  other   than  the Kronecker   "elta which has IcK 
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the value one when the two indices take the same numerical value and zero 

otherwise.  It is possible to write x. ö,  i Xj. and X^   I )C.  But we keep 

the convention of majuscule indices for the material frame and miniscule 

indices for the spatial frame of reference.  This convention is aspec   ^v 

useful in the nonlinear theory. 

From (3.10) and (3.11), by partial differentiation, we obtain 

(3-13) \,K'   (6LK + lJL,K)6kL 

Similarly, we  introduce   the microdisplacement  tensors  «t     (X,t)   and  tfi , (x,t) 

by 

(3.13) XkK "   (6LK +  *LK)6kL 

(3-16) V-   (\k-  V6Ki 

By use of (3.9) and (3.15) and (3.16), we see that (3.8) may also be expressed 

(3.17) u(a) - u+C- E- O^+VlA^K 

(3.18) u(a) - U ♦ C - g - («,, ♦ ^Vi, 

Upon substituting (3.13) and (3.15) into (3.5) to (3.7), we find that 

(3-19) Sa" 6KL + UK,L + UL.K + VKV 

(3-20) ^KL " 6KL + *KL + UL,K + UM,K*M1 

(3,21) rKLM " ^KL.M + UN.KV,M 
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So far all these expressions are exact.  For a linear theory, one assumes 

that the product terms are negligible so that 

(3-22) CKL   6KL + Vl + UL.K 

(3-23) VL '  6KL + Vl + UL.K 

(3,24) rKLM  ^KL.M 

In this case, the difference between the spatial and material representations 

disappears so that one may use u in place of ü and $       in place of ■t' , etc., 

a fact which is well known in the classical continuum theory (cf. Eringen 

[1962, Art. 14]).  For the microdeformation, this may be seen as follows:  If 

we use (3.15) and (3.16) in (2.11), we obtain 

(3.25) *  - (6  + * U 4  6 W  ' KL  ^ KM   KM mÄMmiX 

Neglecting  the product  terms, we  see  that 

(3-26) *KL   •   ^6
KAL 

which  is   the  proof of  our  statement. 

Since we will be dealing with  the  linear  theory,  we  shall  not  distin- 

guish  between material  and spatial  representations  except  when  it becomes 

necessary  for  clarity  in  the development 

The  material   (or  lauranuian)   strain   tensot   E       and   the  materi al  nicro- 

strain  tensors t,,   and  i", „  are  defined  in   the   1 Lrear  theory  by 
 K.L      KLM ' ^ 

(3-27) ^   ' 7(CKL   "   6KL)   " K,L  +  \J 

(J-2Ö) £KL  E V-   V "   \L + UL,K 

(3-29) rKLM"JKL,M 
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In  the light of what has been shown above, we may  also introduce 

the spatial   (or eulerian)  strain  tensor    e,        and spatial  microstrain 

tensors.   e, „  and   u „    in  a similar  fashion: 
 '     k lc k S-m 

(3-30) \t i<\tt**i9J 

(3-31) «ki; ^k^^.k 

(3-32) \.m " '   \t,m 

Clearly, when these tensors are known, c'.ianges in arc length and angles 

during any deformation of the body can be calculated. 

For the linear theory, the difference between the squares of arc 

length in the Reformed and undeformed body follows from (3.4) and using 

(3.15) and (3.27) to (3.29) 

(ds(a))2 - (ds(a))2 « 2^ + r^dx^ 

(3-33) +2(EKL+rLMKVdXKdHL 

+   (EKL + EU -  2EKL)d5KdEL 

In  classical  continuum mechanics,   only  the  first  term on  the  right  involv- 

ing E       survives. 

From  (3.33)   it is  clear   that when E,,, ,   E...   and  r__u vanish,   there 
KL        K.L KLM 

will be no change in the arc length after a deformation.  In such a situa- 

tion, the body is said to undergo a rigid motion. 
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4.     MICRÜPOLAR STRAINS ANÜ  ROTATIONS 

We now consider a special class of materials in which the state 

of the microdeformation can be described by a local rigid motion of the 

microelements. A large class of materials exist in which the micro- 

material elements are dumbbell type molecules. Materials consisting of 

rigid fibers or elongated grains fall into this category For example, 

wood, certain rocks, and minerals contain elongated molecular elements. 

Among fluids, blood possesses dumbbell-like molecules. For such media, 

the micromorphic material theory becomes much simpler. Mathematically, 

this  specialization  is  obtained by setting 

(4.1) *      - - * K       J KL LK 

or in the  spatial  notation  $      "  ~ *oi,*     1°   three-dimensional space,   every 

skew-symmetric second-order  tensor $      can be expressed by  an axial  vector 
KM 

* defined by 

(4-2) *K"2eKLMV 

where c   is the alternating tensor defined as 
K.LM 

el23 ' E231 " E312 "' "E213 " "C132 " "e321 ': ^ 

c„.w " 0 otherwise KLM 

Expression (4.2) is a compact expression of 

*1 ' *32, *2  " *13, *3 ' *21 

The solution of (4.2) for ^  is given by 
KL 

(4.3) *  ■ -£  •* K       ' KL £KLM M 
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Substitutlng this  into   (3.15), we  sei  that 

(4-4) XkK "   6lcK "  WM 

In the classical theory we have the rotation tensor 

(4-5) \L--\K  ^VL-VK* 

The axial vector R, corresponding to this is given by 

\ ' 1  CKLMRML " I ^LlAl.L' 

(A.6) 

'ScL ' ~ eKLMRM 

Using (3.27) and (4.6) , we find that 

(4-7) UK.L- EKL + RKL-EKL- ^KLlAl 

When  this  and  (4.2)   are  substituted into  (3.28)   and   (3.29)., we  get 

(A'8) £KL  "  EKL +  £KLM(RM "  V 

(4.9) rKLM "  "eKLM*N,M 

When ^ -  •M,  wee  see   that E^ - E^ and  r^ -  1^^ and  the 

microstrains  are no  longer  independent of  the  classical strains  and 

rotations.     Thus   the  micropolar  theory  assumes   that  the  classical  rota- 

tion R^  is_ different   from  the  microrotation.     In   the  micropolar  theory, 

we  have  therefore six  functions   to determine,  namely  U   (X,t)   and  1   (X,t) 

Once   this  is  done,   length   and  angle  changes   can be   fully  calculated. 

For  the micropolar  theory,   the spatial position  of the a       point 

is  obtained  through   (3.8),   (3.18),   and   (4.3),   i.e.. 
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(4.10) x(a) -X+E + u-E"* 

From this it is apparent that $  represents an angular rotation of a 

microelement about the center of mass of the deformed macrovolume element 

(4 is the moment arm from this centroid), Fig. 4.1. Accordingly, we also 

have 

(4.11) § - E - E x $ 

which shows that aside from a rigid body translation the relative position 

of E of a materiax point after deformation is obtained by translating S 

parallel to itoelf to the center of mass x of the deformed macrovolume 

element, and then rotating it an amount E * $.  Since we are dealing with 

linear theory, we also have 

(4.12) E-4+^*<> 

where i)) = «t» is   the  spatial microrotation.     In  fact, we have  the  complete  dual 

to equations   (4.1)   to  (4.10)  which we  record here  for  future convenience. 

(4-13) *k"2Wm*       '       ♦ki'-W. 

(4-14) XK. -   \i '  Wm 

(4,15) rk " I £iamrnU   '     rki " '^klufm    '      2  ek)imUm,i 

(4.16) u^       - e. .  - e, .   r 
K,i ki kdm m 

]f.i ki        kimm m 

(4-18) Ykilm "  ^k^n^n^ 
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and 

(4.19) x(a)   -X+H+u-5x$ 

Now consider f.ie deformation of an Infinitesimal vector 

(a) 
dX   - dX + d= at .   -. Upon deformation, this vector becomes 

(4.20) dx(a) - dx + dC - dX + dH + ^JOL,  - dE x $ - H x tt.AL 

By use of (4.7) and (4.6) we may write 

(4.21) u.KdXK - UL>KdXKIL - ELKdXKIL ♦ ^d^^ 

E.,. dX I. - dX x R 
KL 1C-L 

Similarly using  (4.9) 

«  X  ^NdXN  -  CKLMHL*M.NdXN^ "  ^KLnh^h 

For convenience we now  Introduce  the notation 

(4-22) W S   rKLM\ 

so  that 

(4.23) HX *.NdxN.-r:KM)dxMiK-r[KM]dxMiK 

where  Indices  In parenthesis   (and brackets)   Indicate  the symmetric   (and 

antisymmetric) parts.     Carrying  (4.21)   and  (4.23)   Into(4,20)  we  rearrange  it  into 

(4.24) dx^   -  dX + d= -   (dX  ■<  R + dH  x  $ + dX x r) 

+   (EKL+  r(KL))dVL 

where we  also defined  a  new microrotation vector  T by 
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(4,25) rK  E 2   CKLMrML     '       r[MK]  " 'eKLMrM 

We name  this  vector mlnirotatlon  for distinction  from the microrotation 

#.     If we  carry   (4.9)  into  (4.25K,  we  also  find 

(4-26) rK - 7  (-\.LEK +   VV 

Equation   (4.24)   reveals   that  the  deformation of  the  vector 

(a) 
dX    '    - dX + d= may be  achieved by  the   following  three  operations: 

(a) A  rigid  translation of  dX + dH from the material  centroid 

X to  the  spatial  centroid x. 

(b) Rigid  rotations  of dX and d= by  the amounts  dX  »   (R +  F)   and 

dH  x  *,   respectively. 

(c) Finally,  a stretch  represented by the  strains E       and  T. 

in   (4.24). 

The  following special  cases help   to visualize  these  deformations: 

(i)     When  H   ^ 0 we have 

(4.27) dx(a)  -  dx -  dX - dX  *  R + E^dX^ 

This,  of  course,   is  a well-known  theorem  in classical  continuum mechanics 

attributed  to  Helmholtz   (cf.   Eringen   [1962,  Art.   10]). 

(ii)     When  H ■ constant vector 

(4.28) dx(a)  -  dX - dX  «   (R +  [)  +  (1^ + T^^dXj^^ 

Here, ul   course, we have no rotation of dr : 0. 

(iii)  # ■ constant microrotation.  In this case we have 

V)" V] " rK"0 and we obtain 
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(4.29)      dx(0t) - dX + d£ - dX x R + dH x * + EKLdXKl 

In this case, the rotation consists only of a macrorotation of dX and a 

microrotatlon of d=.  We can also write it as 

(4.3U)      d^ - dx(ül) - dx = d: - dX * r - d5 ■ K + r  .dX,.!. 

(a) 
in this form we see the difference between the deformation of dX   and 

that of dX of which the latter is known to us from the classical theory. 

This difference, therefore, is the result of the composition of a mini- 

rotation of dX, a macrorotation of di- , and the ministraining of dX 

characterized by T.   .  The terminology of minirotation is being used 
(.K.L.) 

for [ and ministraining for T  ..  üf course, R is the classical rotation 

for which we use the terminology macrorotation. 

For the spatial representation the dual of (4.10) is 

(4.31) X(a)  -X+4-U+C** 

From this,   in  the  same way  as  in  the  case  of   (4.24),  we obtain 

(4.32) dX(Ql)   =   dx + d4 -•-   (dx   -   r)   + d£,   *   J + dx  *  y) 

"   {\i  ' '(W^^i 

where  r is  the  spatial macrorotation vector defined by  (4.15)   and e,      is 

the  spatial macrostrain  tensor.     The  spatial minirotation vector  Y   -Li-  given 

by 

(4'33) \ " 2 W«* "2  ^t.lV  VV 

and 

(A'34) Ykm      'WiJl  '  ^in^n^l 
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Finally, below we record the component form of various strains and 

rotations in spatial rectangular coordinates x, y, z.  For the components 

of the displacement vector u and micropolar rotation vector ^ we write, 

respectively, u, v, w and <Ji , $ , $ . 

Macrostrain tensor: 

3u 1 ,3u . 3v, 
e  = T— ,  e  " —  (— + r—) 
xx  dx     xy  2  dy   3x 

/, QCK dv 1 .dv   9w, 
(♦•35J e      • -r-    ,     e      ' -  (— + r-) 

yy   3y     yz  2  9z   3x 

3w 1 /3w , 3u, 
zz   9z  *   zx  2  3x  3z 

Micropolar strain tensor: 

(4,36) 

3u 3v 3w 
xx  3x     yy   3y     zz  3z 

3v 3u , 
xy   3x   z     yx  3y   z 

3w 
e  =T <)>   ,  c  =—+^ 
yz   3y   x     zy  3z   x 

3u 3w . 
e  ' $       ,  c  -r—+4) 
zx  3z   y     xz  3x   y 
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Mlcropolar strain tensor of third order: 

3$ 3$ 3* 
x Tx X 

yzx           zyx         3x   ' yzy            zyy         3y yzz           zyz         3z 

3(J> 3$ 34i 
(4.37)   Y          "  "Y         ■ "T^  . Y          =   "Y          ■ "T^  • Y          ■ "Y          " ~r^ zxx           xzx         3x zxy            xzy         3y zxz           xzz         3z 

3d> 3(t 3 0 
 z z z 

xyz            yxx         3x   * xyy            yxy          3y   ' xyz            yxz          3z 

all other Y, „     - 0, 

Macrorotation vector; 

!_  ,_3w       3v. 
rx "  2   ^3y  "   3z; 

(4-38) ^'Hu'W 

1   ,3V       3uN 

z       2     3x       3y 

Microrotation vector: 

(4.39) 4>-iM+(M +  ((ik x- v*        z~ 

Minirotation vector: 

30   30      30     30 

\'i^+lX--^y--^] 

30   30      30     30 
(4.40)        Y -7[(^i + -T£U  - -T1^ --S«.! y  2   3x   3z y    3x x   3z z 

30   30      30     30 
Y - - f (—- + —^) E ~L -L Yz  2 u 3x   iy'^z 3x^x   3y> 
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5.  GEOMETRICAL MEANING OF MICROPOLAR STRAINS AND ROTATIONS 

The geometrical significance of various strain and rotation measures 

can be understood quickly if we consider the change dx   in x   as the 

vector sum of three changes, namely, 

(5.1) dx(0l) - dx + dy + dx 

where 

(5.2) dx - dX - dX * R + E^dX^ 

(5.3) dy - -dX x r+ r^dx^ 

(5.4) dz - dE - dH x * 

Here dx is that known to us from classical continuum theory (cf. Eringen 

[1962, Art. 6]).  Accordingly, on the right-hand side of (5.2) the first 

term dX represents translation of dx from X to x; the second is a rotation; 

and the last term represents the straining of the body.  More specifically, 

consider the vector dX at the point X of the undeformed volume element dV. 

This vector after deformation becomes dx. 

Writing (5.2) in another form 

(5.5) dx -  C^ 

where 

(5-6) ^E^r ^V^M 

we see that a parallelepiped with side vectors I.dX , 1 dX„, and I dX 

after deformation becomes a rectilinear parallelepiped with side vectors 
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C.dX. , C„dX_ and C.dX_, Fig. 5.1. The stretch A.„, and extension £,.., are 

defined by 

(5.7) Iw 5A(W) -1 I 
dx - |dX| 

dX 

Now calculate the extension of one of the sides of the undeformed parallele- 

piped at X, e.g., l^dX : 

|dx|2 = c1dx1 • c1dx1 - c11(dx1)
2 

Hence 

E(l) " A(l) " 1 " ^- 1 

But we have 

Cll - 1 + 2E11 

Thus 

(5.8) E(1) - A(1) - 1 - /I + 2E11 - 1 

From this it follows that 

2E11 " (1 + E(l))2 - 1 

For  small extensions  ^f-,^   <<   1,   and  this  approximates   to 

(5.9) E11   »  E(1) 

which provides a meaning for the normal components t^.,. ^OT* an^ ^33 0^ t^e 

infinitesimal strain tensor.  For the shear strains E,?» E23» E3i we ^inc^ 

a geometrical meaning by calculating the change of angle between two side 
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vectors  such  as  li^X.   and  I-dX-.     The  angle   6..-..   between   these  two  vectors 

after deformation  is  calculated by 

^ldXl   •   ^dX2 C12 
C08   e(12)-   IcJdX^C   idX2-^== 

2E 12 

/I + 2E11   /I +  2E22 

The  change  of  angle   T,^.   " T"  ^riP^  between   the  original  and  the  final 

angle  follows  from  this 

2E, 
(5.10) sin  f  12 

^     y       /I + 2E1]   /I +  2E22 

For small strains E       << 1,  E -  << 1 and sin  ?(-.j)   ' rn2^   so  t^at we ^ave 

the  approximation 

(5.11) r(l2) - 2E12 

which provides   the  geometrical meaning  for  the  shear strain E     .     Similar 

results  are,  of course,  valid  for E  „  and E^, • 

For  the  rotation vector R we have  the  following geometrical  inter- 

pretation:     Let N^ be  a unit vector  in  the X.,   X„-plane at  X.     After  defor- 

mation,  N- becomes  a vector n^ at  x.     Bring n^.   to X and obtain its  projection 

n_  on X.,  X^-plane,   Fig.   5.2.    Let  the angle between N    and n- be  denoted by 

6   .     We  can show  that   (cf.   Eringen   [1962,  Art.   10])   the average   *   tan  e> 

over-all  angles   *   that  N_   can make with  the X-axis  is  related  to R_  by 

(5.12) <  tan  ö,> 
/H  +   E..)(l  +   E,-)   -   E2 

11 22 l2 



-31- 

where E ., B«»« an^ '13 are t^e infinitesimal strain components and R. it 

the rotation component in the X.-direction, i.e., 

1  3U2  dUl 
3    12  2 ^Xj^  3X2

; 

For small strains   (5.12)   can be  approximated  to give 

(5.13) < e3>  R3 

which provides a geometrical meaning for R...  Similar interpretations are, 

of course, valid for R1 and R„. Accordingly, for small deformations and 

rotations, R represents the average rotation angle of the diagonal vector 

dX of the undeformed parallelepiped. 

The above discussion concerning the deformed parallelpiped with 

diagonal dx at x may be used to provide a geometrical meaning for the 

deformed parallelepiped with diagonal dy at x.  To this end, from (5.3) 

we observe that r takes the place of the rotation R and I".  , that of E  . 

Accordingly, the undeformed parallelep'ped with diagonal vector at X + E 

with 5 fixed, undergoes an additional rotation I and length and angle 

changes represented by the strains T,  , at the spatial point x + ^ that 

the point X + H occupies after deformation. This deformation takes place 

with S being displaced parallel to itself. This deformation emanates pri- 

marily from the parallelepiped with diagonal dX being constructed at the 

point X + E with E fixed imtead of being at X, as in the first case. 

Finally, a parallelepiped with diagonal dE constructed at X + E 

with X fixed is rigidly displaced to a spatial point x + 4 and rotated with 

the microrotation $ at that point. Thus the final rectilinear parallelepiped 

with diagonal dx   at x + C is constructed as a result of these translations, 

rotations, and strains. 
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The picture of the deformation in   these  latter  cases  is  clarified 

further if we write  (cf.   (3.1)) 

(5.14) dx(a)  -   (CK +  CydX^ +  xKdSK 

where 

(5-15) ?K £  ?L.K=L 

and  \v is  related   to (^      by   (3.15). 

In  the  form  (5.1A),  the  deformation  of a parallelepiped with  diagonal 

dX at  X +  = and another  one with d:  are shown on  Figure 5.3.    According to 

this  picture,  dX  at X +   | with  fixed  E becomes   (C    ♦  C  )dX^,   Fig     5.4,   and 

the one with diagonal dE  at X + i with X  fixed becomes   x^dX^,  Fig.   J.5.     The 

resulting deformation of  dX +  dE at  X +  E   is  the  vector sum of  these  two 

deformations.  Fig.   5.3. 
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b.     INVARIANTS OF  STRAIN TENSORS 

The  state  of  local deformation at  a point  X +  E of  a micromorphic 

material is   fully  determined when  the three material strain   tensors 

{bA) hh   *   LKL   '   rKLM 

are  given.     With  knowledge of   these   tensors, we   can calculate length 

(cf.   (3.30))   and  angle   changes   (Art.   5)   and construct   the spatial  locations 

of various  material points  in   the body.     Instead of  the  list   (6.1), we  may 

of course employ   the spatial  tensors £,„,   E.      and y,      .    An  important 

question in  continuum mechanics  is:     If  the material   (spatial)  coordinates 

are  rigidly   rotated at   X  (at  x),  are  there some   functions of  the material 

(spatial)   strain measures which  remain unchanged?    The  answer to  this  ques- 

tion  is  provided by  the   theory  of  invariants.     In  fact,   the   theory of  invariants 

is  concerned with  a more  difficult  question,  namely:     To determine  the   complete 

set of  invariants   (called integritv  basis)  of  a  given  set  of  vectors  and 

tensors which are  unchanged under an arbitrary   group of  transformations   of 

coordinates.    The minimal basis  is   a subset of   these  invariants which  can 

be employed   to express   all other invariants of   a  given  set.     The  answer   to 

this  question is   important on   two accounts: 

(i)     Constitutive  equations  rausL be  form-invariant under rigid motions 

of the  spatial  frame of   reference.     This   is known as   the  principle of  objec- 

tivity .     Investigation  of  this   restriction on  the  constitutive equations  often 

requires knowledge of   the  invariants  of  constitutive  variables such as   strain 

measures. 

(ii)     The Material  symmetry places   restrictions  on  the   form of  the   con- 

stitutive equations when   the  material frame of   reference is   transformed 

according  to some  group  of transformations.    For  example, when the material 
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has  a plane  of symmetry,   the  constitutive equations should not  change  their 

forms when  a  rpflection  of  axes  is  performed  according  to the   plane  of 

symmetry.     Similarly,   for Isotropie  materials,  the  constitutive equations 

remain  form-invariant under the  full   group  of orthogonal  transformations 

of  the material  frame of   reference.     For anisotropic materials with  some 

symmetry  axes,   the  group  of  transformations   is  less  restrictive. 

The   invariants of  a symmetric  second-order  tensor  (such   as E     )  in 

three  dimensions  are: 

(6-2)        ^   E  EKK     '     IIE   E I (EKKELL   '  EKLELK)     '     lllE   *  det   EKL 

Instead of  this set,   one  may  also employ 

trE    EEKL 

(6.3) tr^EKLELK 

3 
tr E    ::EKLELMEMK 

The above   two  sets   are  related  to each  other.     In   fact 

2 2 
tr E - 1.      . tr E    =  I    -  211 , 

(6.4) 

trE3-  I3-  JIEI1E+3IIIE 

The determination  of  the  minimal  integrity basis  of   (61)   is  much more 

complicated.     In  fact,   to our knowledge  the  basic  invariants  of  third  and 

higher-order   tensors  have  not been studied  to date       Fortunately,   in   the 

present  theory  T always  occur  in   the  form  T      5     =  r       so   that we  may 

instead search  for  the  invariants of 

(6'5) hi   '   ^L   '   rKL 
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For  the micropolar   theory,   the situation Is  simplified  further 

since  E,    ,   « E     .     The  Invariants of  two  symmetric and  two  antisymmetric 

second-order  tensors 

(6'6) E(KL)   "  EKL       '       E[KL1        ' r(KL)        '        r[KL] 

would be sufficient   for  this purpose.     The   Integrity basis  for  the  proper 

orthogonal  group  for such   a set  has  been studied by various  authors.     Below 

we give  a table  for   the  construction of  these Invariants-     For  the  sake 

of simplicity, we  introduce  the  symbols  a,  b   for  the  symmetric  tensors  and 

u,  v for the  antisymmetric  tensors.     In Table 6.1 we  give  the  invariants 

of  these  tensors  in  ascending order of  the   integrity basis of various  sub- 

sets of a,  b,  u and  v.     The  integrity basis   of  the  quantities  listed  in each 

entry  of  the  first   column  includes  all entries on   this  row and  the  integrity 

basis  of all subsets  of  these  quantities.     Thus,   for example,   the  integrity 

basis   for a,  b  in   the second  row includes   that of  a and b,  namely,   tr  a, 

2 3 2 3 tr a  ,   tr a   ,  and   tr b,   tr b   ,   tr b   .    Also  an asterisk   (*)  placed on  the 

products  indicates   that we   include  in  this   list all other products obtained 

from this by  cyclic  permutations  of  the symmetric matrices.     A dagger   (t) 

indicates  the  inclusion of  all quantities  obtained by  cyclic permutation of 

the skew-symmetric  matrices       Thus,   for example,  ab* means  the  inclusion of 

the set 

ab   ,  ba 

2 
Similarly,  u vat means  the   inclusion of  the   set 

2 2 
u va+   ,  vu t+ 

For other details   and more  extensive  studies  on invariant  theory see  Spencer 

[1966].     Since we will be   interested,   generally,   in  a linear   theory,   many 

entries  in  this  list will  not be needed in   the  construction of  the  constitutive 

equations. 
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Matrices Matrix Products 

a,  b 

u 

u,  a 

u,  a,  b 

y» Y 

u,  v,   a 

u,  v,   a,  b 

2       3 
a:   a  :   a 

2*      2 2 
ab;   ab     ;   a b 

2 2  2       2       2 
u  a;   u a  ;   u  aua 

2* 2 2 2     *        2 2*       2 
uab;  ua b   ;   ua b     ;   ua ba  ;  ua b  a   ;   u  ab; 

2 2*2 22* 
u a b   ;   u aub;   u aub 

uv 

2       2     t       2    2+      2       2T 

uya;  uya  ;   u  ya  ;  u ya     ;   u aya 

2  * 2* 2 2 2    * 
uvab;   uvba;   uva b   ;   uvba     ;  uva b   ;   uva ba   ; 

2    ,t      2    . t      2,      *t 
u yab   ;  u ayb   ;  u bya 
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7.     VOLUME  CHANGES 

Here we   calculate  the  change of  volume with  deformation.     A volume 

element  dVL   -  dX dX^dX    at  X +  H with   fixed   5 will  be  called a material 

macrovolume element   and one  dt/ ds.dE.d5. with  fixed X will  be   called a 

material minivolume  element.    After deformation,  dV    becomes  dv  and dU 

becomes  dv given 

(7,1) dv = JdX dX  dX 

(7.2) dv -  jd=1d52d53 

whero J  and j   are  the  jacobians of  deformation with  5 and X fixed respec- 

tively,   i.e. , 

(7-3) JEdet  (\,K+  «kM.KV 

(7.4) j       det  (x^) 

To obtain  the   ratios  of deformed  volume  elements  to  those of  undeformed 

ones, we need   to calculate   the jacobians  J  and j.     Since   the  determinant of 

the product of  matrices  is  equal  to  the  product of   the determinants  of matrices, 

we have 

J   =   Met   [(x^ ♦  XkM>K.M)(xk^L +   XkNfL^)]}1/2 

1/2 
!det   (xk,KXk,L +  ^.L^kM.K M +   Xk,KXkN,L-N +  ^M.K^N.ITMV 

} 

Upon using  (3,5)  and   (3.6)   this  becomes 

(7.5) J  -   Uet   (CKL ♦   :LMKEM +   .^^ +   r^r^'^H^) )112 
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where 

(7-6) S ä VkV 

is   the  Inverse  tensor  to C     .     In   the  calculation  of   the  last  term on  the 

right-har.d side,  we employed 

XkL,M '   rKLMXK,k 

which follows  from (3.7). 

The  above  result   (7.5)  is  valid  for a general  micromorphic material 

and  can be  further simplified.    We  are,  however,   interested only  in a 

linear theory.     In this  case   (7.5)   can be approximated by 

J.   (det   [\L^2EKL+2r(ia)]}1/2 

Expansion  and linearization of  this  gives 

(7-7) J1+EKK+rKK 

Thus the macrovolume change with fixed S, to a linear approximation, is 

given by 

(7.8) ~ - I - tr E + (V x  ♦)   '   5 
dvo 

where we used (4.9). Here the first term on the right-hand side is the 

classical expression of the dilatation,and the second term is the addi- 

tional volume  change  due   to microdeformation. 

Similarly,  we  can  calculate   the mimvolume  element dv by determining 

j   given by   (7.4).     In  this  case 

(7.9) J-   [det  (X,^)]1'"- 
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For  the  linear theory  from (3.15) we have 

XkK =   (6MK+  V6KM 

Hence (7.9) to a linear approximation is 

(7.10)    j ■ [det (6KL + *KL + *LK)]
1/2 - ! + ^KK + 0(*2) 

For  the micro^olar  theory  4>      «  0 so  that we have 

3^ - i . o<.2, 

Hence,   in^ the  linear micropolar   theory   there will  be no minivolume  change. 

A minivolume   (for  X fixed)   rigidly  rotates without  altering its value. 
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8.     COMPATIBILITY  CONDITIONS 

The strain  tensor e.      and micropolar  strain   tensors  e. .  and  y 

are expressed  in  terms of   the displacement   field u.    and  microrotation 

field  4»    by 

^ V - 2 (uk.i + V^ 

(8-2) £k£  " U£.k + ££km*m 

(8-3) VkUi " £k*nVm 

Of  these,(8.1)   is  the eulerian linear strain   tensor known  to us  from  the 

classical  theory  and   (8.2)   follows  from  (A.17)  by  use of   (8.1)   and  (4.15) 

and   (8.3)   is  identical  to   (4.18).     When  the  six quantities  u    and  L    are 

prescribed,   these  strain  fields   are determined uniquely   through  (8.1)   to 

(8.3)  by mere substitution.     If   instead  the  six strains  e, .,  nine micro- 

strains   c.g   ,   and nine non-vanishing components of  y        are prescribed, 

then  the  determination of  the displacement  and microrotation  fields   requires 

the solution of  twenty-four  partial differential  equations   (8.1)   to   (8.3) 

for  the six unknowns   u,   and  $   .     Such  a system is  over-determined and 

restrictions must be  imposed on e. „,  c. .   ,   and y, .   .    These  conditions   are 
kit'     kü. kÄ.m 

known as  the  compatibility   conditions.     For  the classical strain  tensor e.    , 

the  compatibility conditions  are   (cf.   Sokolnikoff   [1956]): 

(8.4/ e +e -e -e ■ 0 
k£,mn mn.kJ. kni,«,n An,km 

If we notice  that 

(8-5) ek    =   e(U)        2   (F-k£ +  E£k) 
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then (8.4) can also be written as 

(8.6)     G/. „x   + C/  •, , „ - £/, \ „  - £/„ si  ■ 0 
(kll),mn   (mn),k£   (kni),«,n   («,n),km 

An alternative derivation of (8.6) is instructive:  To this end through 

(8.2) we calculate the displacement field u, from r k 

(8-7) Uk ' \ + V^k + Wm)dx£ 

where u, is the value of u, at one end x' of an open curve C in the body. 

Integrating by parts the second term under the integral, we also write 

(8-8)   \ " \ + W.^i - ^ + Veik + "^^ ~ ^u^]6xi 

For the displacement field u, to be independent of the path C followed 

between the points x and x , the integrand must be expressible as a 
mm 

total differential,   i.e., 

£ik-   WX*   -  X>m,i   =   Fk,i 

rfhere  F. (x,t)   are  single-valued  and possess   continuous  partial  derivatives 

with  respect  to x, through second order.     From  this  it  follows  that 

F =  F 
k,ij       fk,ji 

Consequently 

Skj " t'ttm^i - ^Vi'.J  " £jk.i + [WX
Ä " x2Um,jj.i " ü 

txpanding the second  term and  using  (8.3)  we  obtain 

ik,j jk,i ikj jki 
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These are the necessary and sufficient conditions for the displacement field 

u  to be single-valued and continuous in a simply-connected region.  Elimina- 

ting Y from (Ö.9) by differentiating and using (8.2) and (8.3), we obtain 

(H.6) again. 

A similar method can be applied to Y. „  as follows.  First we solve for rr        k*m 

♦   by multiplying both sides of (8.3) by t       ,  Hence 

(••10) ♦   " "T ebn ^1 n r,m  2 kit ki.m 

Integration of   (8.10)   along a smooth  open  curve  C gives 

^r =  *r +  2  {, ZkiryUmd\ 

The  condition of single-valuedness   for $    now reads 

(8-U) eklr(vkt.,n ' >Un.m) = 0 

Thus we  have  proved   the  following. 

Theorem: The necessary and sufficient conditions for the integrability 

of the system (8.1) _to (8.3) for a^ simply-connected domain is the satisfaction 

of   the  compatibility   conditions   (8.4)   and  (8.9)   and   (8.11)*. 

We note   that   the  terms  outside  the  line  integral  in   (8.8)   represent 

rigid body deformation. 

* 
Condition (8.9) was obtained by Sandru [1^66].  For the general nonlinear 
theory of micromorphic materials, the proof was given by Bringen [1967). 
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9.  SOME SPECIAL DEFORMATIONS 

In this section we present a lew special deformations for illustrative 

purposes. 

(i)  RiRicl Deformation.  The deformation of a body is called rigid if 

the distance between every pair of points X   and Y   in the body remains 

unchanged.  From (3.33) it is clear that the necessary and sufficient condi- 

tion for the ri^ld deformation of a linear nicromorphic body is 

(9.1) E-l-O  ,   [ - 0 

Alternatively, in terms of the spatial measures of strains 

(9.2) e=e=ü  ,   y-O 

For a micropolar body E  * Ü implies 

(9-3) UK " ^SoA + BK 

where   R       is  an arbitrary skew-symmetric  tensor  and  B     is  an arbitrary vector, 

both  of which  are  independent  of  X.     The  condition  f       ■  0  implies  that  •_ be 
KL K 

independent of X.  Finally t       = 0 gives 

(9.4) *K - ^ 

where 

(9-5) \ ' 1 ^LH^L 

is a rotation vector independent of X. 

(ii)  Isochoric Deformations.  The deformation will be called macroisochoric 

if the material macrovolume remains unchanged.  It will be called miniisochoric 

if the minivolume is unchanged.  The necessary and sufficient condition for 
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macroisochorlc deformations  according  to  (7.7)   or   (7.8)   is 

(9-6) EKK+rKK"0 

The condition for miniisochoric deformation follows from (7.10).  Since, 

for the linear micropolar bodies b      - 0, we see that the linear mlcro- K.K ———— 

polar bodies undergo only miniisochoric deformation.  We note that, in 

general, this is not true for general micromorphic materials. 

For the condition (9.6) to be valid for all ;, it is necessary and 

sufficient that 

(9.7) E  « 0  .  r  = 0 1   ' K.K     '    KK 

(iii)  Homogeneous Strain.  The state of strain in a body will be called 

homogeneous when the deformation is linear and homogeneous in the position 

vectors X and H of the material points, i.e. , 

(9.8) x(a) - D^ + PKEK 

where Ü and 0    are constant vectors.  In terms of the components of these 

vectors, (9.8) is equivalent to the system 

(9-lü) ^k = 'WK 

where  I)      and i),     are  constants  for static deformations and  functions  of   time 

only  for  the  dynamical motions  and 

i9-n> 9k "Wk    •    ?K"Wk 
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Equation  (9.9)   is  the  expression of homogeneous  strain  in  classical  continuum 

mechanics.    The  deformation  described by  this  set  carries  straight  lines  into 

straight  lines,  ellipses  into ellipses,  ellipsoids   into ellipsoids.     The 

microhomo^eneous  deformation   (9,10)   is new, and  it  possesses  the  same kind  of 

properties with  respect   to  '=..     For  the micropolar body, 0      can be  replaced 

by  a single vector V given   through  the solution of 

(9-12) PkL -  6kL "  WM 

namely 

(9.13) P    • -• e       L> ^ ' M 2     kLM kL 

Equation  (9.12)   results  from equations   (3.15)   and   (4.3)  with  * ■ P.     Thus   the 

microhomogeneous  deformation  can also be  expressed  by 

(9.14) |    -   H -   E  x p 

where the vector P  is independent of X and of course H. 

The material deformation tensors follow from (3.5) to (3.7) and (9.9) 

and (9.1Ü) with V      - x^-  Thus 

CKL " \KDkL 

(9.15) 

'KL " "kK kL  '   'KLM 

P 
4'„. - D. „ ,.   .  r  - 0 

It  is  now  clear  that   the  strain measures  are homogeneous.     For a micropolar 

solid we  use   (9.12)   so  that 

(9-16) yKL  -  ^K "  £
LMNVM 

where we  put 
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ÜLK - 6kLDkK 

Below we give several special cases: 

(iiia)  Uniform Macrodilatation  In this case, D is a diagonal matrix 

having the same entries, i.e.. 

(9.17) 
rD 0 o' 

0 D i) 

0 0 D 

0 < D < ^ 

The deformation tensors in this case take the forms 

(9.18) CKL " D 6KL  ' \L  '   DPkL6kK  '  rKLM = 0 

The deformation carries a parallelepiped having edge vectors f^dX^ at X + E 

to one with edge vectors DdX.l , Fig. 9.1.  The ratio of the length of an 

edge to its original value (the macrostretch) L, , is therefore given by 

L(K) = D 

The angle between any two edge vectors of the deformed macroelement is 90°. 

The deformation carries a raacrocube of unit volume to a macrocube of volume 

D .  The microelement changes according to the values of V   ,     From (9.16), 

for this case, we have 

(9.19) *  ■ ü(6  - e V ) 
KL    V KL   KLM M' 

From this  it  is   cxear  that 

(9.20) 4'11 -  t22 t       «   Ü 
33 flCL " "W^M    '     ^"^ 

Thus, the microstretch ^/^x» the ratio of the edge vector of the deformed 

microelement to that of the deformed element, is given by 
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(9.21) V) ■D 

Hence,  the edges  of   the microelement  are  stretched  the same  amount  as   those 

of  the macroelement.     For  L) ■  1 we have no macrodeformation or mlcrodeforma- 

tion.     However,   the  microelement undergoes  a  rotation described by  V,     For 

the  general micromorphic  materials,   the  situation  is  much more  complicated 

and  it  is  possible  to have  microdeformations  even when  the macrovolume   remains 

unchanged.     This  situation  is,   of  course,   a  familiar one  in molecular  theories 

of  crystal  lattices. 

(iiib)     Liniaxial   Strain.     Consider  the homogeneous  strain  characterized 

by 

(9.22) D = 

— - 
D 0 0 

0 1 II 

Q 0 1 

0   <   D   <   ^ 

In this case, for a micropolar solid through (9.15) and (9 16), we get 

(9.23) 

D2Ü 1) 

0    1 0 

0     0 1 

D -P,D P,tf 
3 2 

0,1) 1 "P. 3 1 

-P,D P. 1 
2 i 

Macrostretch L/KN and microstretch fc, . are 

(9.24) 

L(l) " D 

V) ' ü 

L
(2) ,= L(3) s 1 

(2)   (3)   i 

For  P. ■ P_ ■ P_ ■ 0, w«  have  the  classical  uniaxial  strain  according  to 

which  a bar of  length  dX.   after deformation becomes  a bar of   length  DdX   , 

Fig.   9.2.     For non-vanishing 9    we  see  that  the  microelement  is  stretr'.ed 

i y   the  amount  Ü in  the  X     direction  in addition   to having a  rotation.     The 
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geometry  becomes  particularly simple  for  the  two-dimensional   case  for which 

we  have 

(9.25)       D D    0 

0     1 

D       0 

0       1 
.   t 

D       -P3D] 

.D3D 1 J 

A sketch  of   the  deformation  is shown  on  Fig.  9.2.     The macroelement OACB 

after deformation becomes OA'C'B elongated an amount   (D-l)dX     along the 

X.-axis vith no  change  in  the  lateral  directions.     The microelement  Cacb 

is  stretched by  the  amount  DdH    in  X    direction becoming Da'c'b'       After- 

wards,  a  rigid microrotation occurs   about  the X-axis  at  C,     The   final 

shape of  Cacb  is  marked by  Ca"c"b".     For  the  general micromorphic materials, 

it  is possible  also  to have microstretches   independent  of  the  macrodeforraa- 

tions. 

Generally,  when a bar is  stretched in one  direction without  any 

constraints  on  its  sides   it will  also  change  its   lateral dimensions.     This 

situation  is   characterized more  realistically by 

(9.26) D = 

D       0     0 

0       DO 

0       0     D, 

In  this  case  the state of strain  is   called simple  extension.      For simple 

extension we have 

(9.27)       C 

D^    Ü      0 

0     u2   Ü 

o    0    u: 

D1 -0^3 D^ 

V3 D2 -D2P1 

-V2 D2P1 
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Frora   (9.27) 1   it  is  clear that a macroelement in the shape of a rectangular 

parallelepiped  after  deformation becomes   another  rectangular parallelepiped 

with  its  sides  elongated proportionally  to D.,  D_,  and D_.     A microelement 

in the shape of  a  rectangular parallelepiped changes  its  sides  in  the  same 

proportions,  however,   it also  rotates. 

(iiic)     Simple  Shear.     In classical  continuum mechanics  a homogeneous 

strain  characterized by 

(9.28) 

ISO 

0 10 

0 0 1 

— 00 <  S <    '*> 

is called a simple shear. Here S is independent of X^.  The spatial position 

(a) 
x .  of any material point X + = after deformation is given by 

4^   = Xl + SX2 + Hl + ^3 " V3-2 

(9.29) 
(a) X2 + .2 + V3h  - P1S3 

«<a) = X3 + .3 + P1E2 - V2h 

In the case of 0    ■ 0, simple shear rotates X, = const planes rigidly about 

their lines of intersection with X« ■ 0-plane, by an amount equal to the 

angle of shear y  given by 

(9.30) arc tan S 

The X- ■ const, and >  ■ const, planes are unchanged (cf. Eringen [1962, Art. 15]) 

The deformation tensors C, f, and 1 are given by 
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(9.31) 

S 1+S 0 

0 0 -p. 

-p. 

(S+1)P3       1-SP sV2~Ui 

I - Q 

From  (9.31)  we see   that even when   there is  no macroshear,   that  is when  S » 0, 

we shall have a microrotation prescribed by  the microdeformation  tensor 

(9.32) 

1 

P. 

-V V 
3 2 

-P 0 1 
2 1 

The picture for a plane microdeformation, in this case, is similar to the 

one described by Fig. 9.2. 

(iv)  Plane Strain.  In classical continuum mechanics when the defor- 

mation of a body is identical in a family of parallel planes and vanishes 

in the directions of their common normal, we say that a state of plane strain 

exists.  This plane strain is thus characterized by 

(9.33) 5^ - xk(X1,X2)   ,  (k = 1,2) X3 ' X3 

For  the  micropolar deformations,  we  define  the  state of  plane-micropolar strain 

similarly.     Using  (4.11)   and setting «t. 5 *     z 0,   t_   ^  * we  have 

(9.34) 

h'h'   *(X1.X2)52 

C2 -  H2  +   *(X1,X2)53 

Si    ,,     - i 
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Thus,   in  a plane macrostrain  and microstrain  the  deformation  is   fully 

prescribed when  the  two unknown displacements 

(9.35) 

ül(xl,x2) -= «j - x2 

U2(X1,X2)   - x2 - X2 

and  the microdisplacement  <i(X. ,X?)   is  determined.     The  field  equations 

should,   therefore,  consist of  three  partial differential equations 

replacing  the   two equations  of  the   classical  theory.     This,   as we shall 

see,   is  the  case   (cf.  Arts.   25  and  26). 

The   spatial deformation  teneors   for  the plane  strain  are 

(9.36) 

Cll    C12    0 

C21    C22    0 

0        0       1 

t f 0 
11 12 

* T 0 
21 T22 U 

0 0 1 

r      - -r      ■ -• 
12M 21M 'M ,       (M -  1,2) 

Equations   (3.27)   to  (3.29)   and   (A.3)   provide  the  relations  between defor- 

mations,   tensors,  and strains   (or displacement vectors): 

CKL -   6KL + 2EKL -   6KL + UK.L + "L.K 

(9.37) t      «£      +6      -6       -e       «t+U 
KL KL KL KL KLM M L,K 

KLM KLN N,M 

Thus,   for  the  strain  tensors  E      and £       we have 
KL K.L 

(9.38) 

Ell    E12    0 

E21    E22    ü 

0        0      0 

, £ 

£ii   Ln   0 

E21    £22    0 

0 0      0 
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when 

31^ 1  aUj^   3U2 3U2 
Ell " "äx^  ' E12 " E21 " 2   ^Xj + ■33^")   '   E22 " ^Xj 

aUj^ 3u2 

(9-39)    Eii"^;   • f-i2--* + —; 

3U. 3U0 
F  - 4 + —^      F  .  i- 
21   *   3X2 '   C22       3X2 
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10.  MOTION, MICROMOTION, MATERIAL DERIVATIVE OF TENSORS 

A material point at X + H at time t ■ 0 is carried to a spatial 

point x + 4 at time t. The motion of this material point in a body 

is described by one parameter family of transformations. 

(10.1) x(a) - x(X,t) + ax.H.t) 

where x(X,t) is the place occupied by the center of mass X of a macro- 

volume element dV + dS at time t and C(X,5,t) is the relative position 

of the point X + 5 at time t with respect to the center of mass.  For 

micromorphic bodies we have (3.9) or 

(10.2) x(X,t) - X + u(X,t) 

for x(X,t) and (2.9) for C(X,H,t).  For micropolar bodies, (10.2) remains 

valid but (2.9) is replaced by (A.11), i.e., 

(10.3) S(X(|»t) ■ 5 - a « *(X,t) 

In these expressions U(X,t) and l(Xft) are respectively the macrodisplace- 

ment vector and microdisplacement vector.  The parameter t is real repre- 

senting time. 

According to the axiom of continuity and indestructibility of matter, 

the inverse motions X(x,t) and H(x,C,t) are assumed to exist.  Thus we 

may also write 

(10.4) X(a) - X(x,t) + =(x, ,t) 

where g is given by (?   13)   for micromorphic bodies.  We also have 

(10.5) ¥(x,t) - x - u(x,t) 
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However, for micropolar bodies (2.13) is replaced by (4.12), i.e., 

(10.6) § + § x $(x,t) 

For displacement vectors,  we employ  the same symbol  u and  ♦ both  in material 

and spatial descriptions.     However,   in  the  former  case u and  i* are assumed 

to be  functions  of X and  t,   and in  the  latter  case   functions  of  x and   t 

since we may  substitute  X - X(x,t)   for X in u(X,t)   and  $(X,t)   to pass   from 

material description  to spatial descriptions.     Single-valued  inverses  X(x,t) 

to x(X,t)   and  =(X,4,t)   to  § -  ^(X,5,t)   are assumed   to exist  at  a neighborhood 

of X at  all   times except  possibly  some singular  points,  lines,   and surfaces 

in the body.     A sufficient  condition  for  this   is  the  continuity of partial 

derivatives  of   these   functions with  respect  to X    and 

(10.7) det   (^ K)  + 0 det  ($k KW  0 

in some neighborhood of X,. at all times.  We assume that such is the case. 

In the kinematics of continuous media, the time rates of vectors and 

tensors associated with material points play an important role. 

Üef. 1.  The material derivative of any tensor is defined as the 

partial derivative of that tensor with respect to time with the material 

coordinates X and = held constait.  The material derivative is indicated 

either by placing a dot on the letters or by D/Dt •  Thus, for example, 

DF   3F (X,t) | 

(10.8) 

Df.   3f (x,t) 

D*k    ^k 
Dt ■i 

X. " *K(X't)=K 

where subscripts  attached  to a bar  indicate  that   those variables  are held 
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constant during the differentiation.    Since through   the centroidal motion 

we  have 

(10.9) xk - x^X.t)      or      X^- ^(x.t) 

we have 

fk(x,t)  -  fk(x(X,t),t) 

so  that 

fk "   at 
X I 

3xe(X,t) 

It 

In short,  without  ambiguity we write 

(10.10) f, 
Dt "      dt +   fk,lXi 

The   first   term on  the extreme   right  of  this equation   represents   the time 
x 

rate  of change  that occurs  at  a place/Jat   time   t.    The  second group of 

terms   is known as   the  convective change.     These arise   from  the motion  of 

the  material point X through   the place  x. 

In  the case when  the   tensors   involve the macromotion  in the material 

differentiation,  we also consider  the  relative  location vector  z    held 

constant,   cf.   (10.8)..     Another example  is provided  by differentiation  of 

(4.11). 

(10.11) 

-E  x   <t>      or -e 
kLM-L 

^M(X,t) 

>t 



• 
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il.    VELOCITY, ACCELERATION,  MICROROTATION,   SPIN 

Def.   1^     Velocity  is   the  time  rate  of change of  the  position vector 

of ji material point.     Thus 

• • 
(11.1) v   = x(X,t)       or      vk  " ^ 

where  X is  held   constant.    Since  x ■ x(X,t) we  have 

ax(X,t) 

at 
x(X,t) 

Note  that in a body with microstructure,   X is the position of the   center 

of mass of   a macrovolume element  and it  may or may not  be  actually   occupied 

by a material point.    Nevertheless,   in defining   the  time rates of   vectors 

and  tensors  associated with  the body, we   refer  to X as   the  material  point. 

Upon  replacing X by  (10.9)?  we also write 

• • 
(11.2) v  -  x(X(x,t),t)  - xk(x,t)ik - vk(x,t)ik 

where  i,   are the  spatial   rectangular unit  base  vectors.     This equation 

defines  the  velocity field v     at a spatial  point   x at   time   t.     This   is  the 

eulerian concept   of the   velocity field which is   prominent in hydrodynamics. 

For the lagrangian  viewpoint,   we express   the velocity  vector  in the  material 

frame  of reference  X^.     Thus 

* ̂ (X^) 
(11.3) Y.VK(X.t)IK       ,       VK.—^p-6^ 

Def.   2^.    Acceleration  is  the   time   rate of   change  of   the velocity 

vector of ji  material point.     Thus 

Dr. 
(11.4) a £  v        or        \ '  vk ° — 
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For the lagrangian viewpoint we have 

3V (X.t) 
(11.S) a - AK(X,t)IK  ,  AK £ —~  

and for the eulerian viewpoint 

Dv   3v 
(11-6) ak -—m—+\yi 

Here we notice the appearance of the convective terms v,  v 

The velocity v and acceleration a defined above are the kinematical 

quantities describing the motion of the center of mass X in a macromaterial 

element V + S. We now proceed to obtain the relative velocity and accelera- 

tion of a material point X + 5 with respect to the center of mass X.  For 

these, we take the time rates of the relative motion for a micropolar body 

given by (2.9), namely, 

(11.7) § - XK(X.t)5K 

Thus 

•      • 

(11.8) 

i '  XK(X.t)5K 

§ - XK(X,t)EK 

Alternative expressions are obtained by replacing E  by its expression 
K 

(U.9) ^-V^k 

Thus,   for example . 

(11.10) i -  vk(x,tKk or ir   v^ 



• 
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where 

(11.11) vk(x.t)   I   XK(X.t)XKk(x.t)      .     v^   I   x,KXKk 

It is  understood  that  X appearing in  the argument  of  x    is  also  replaced 

by  (lü.9)2. 

De f.   !_.     The  three vectors  v     defined  by  (11.11)   are  called  the 

gyration vectors.   and  their  components   v       form the  gyration   tensor. 

When  the  gyration tensor  is  given, we  can calculate  the  eulerian 

microvelocity  § by   (11.10).     For  the  microacceleration  in a similar  fashion, 

we obtain 

I ■ Vk + Vk ■ Vk + Vk»ci 

where we used  (11.10)„.     Thus 

(11.12) { -  ak(x,t)Ck       or       ^ -  a^fo 

where 

(11.13)        öL (x,t)   i V.  ♦ V V .       or      a.,    =  v..   ■¥ v.  \J . 
~K   ~ -k       -m mk ik ik im mk 

Def. ^     The  three vectors  a. (x,t)  defined  by   (11.13)   are  called 

the spin  tensor. 

The total velocity v        and acceleration a        of  a material point 

X + =  can now be  calculated by 

(11.14) v(a) - x + £ - v + v, r 
k  k 

(11.15) a(0l)   - a +  a - v + o^C 
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For a micropolar body,  these expressions  are modified by use of  (4.A)   and 

(4.14).     Thus,   for  example, 

(llll6) \i -  -WM
+

  
ekKMC^mVm 

For the  linear theory  this  is  simplified  to 

(11.17) v. „  = -e. „  i 

Upon  introducing an  axial vector v. , called microgyration vector,  by 

(11.18) v,    ■ T Ci „  v   .     , v, .  ■  -e, .   v 
k       2     kim ml     ' kl klm m 

we see   that 

(11.19) vk -  *k 

and  (11.10)     now reads 

(11.20) £ - -^  x  v 

Similarly,  one can  calculate  £.     An alternative  approach  that may  be   instruc- 

tive  is  through  taking the  time  rate of   (11.20) 

• * 
(11.21) C--^xy-£xu--§'<v-»-Uxv)   xv 

If we   recall  a vector identity 

(11.22) (a  ^ b)   '  c -   (a  •   c)b  -   (b   •   c)a 

the  above expression  can be written  as 

(11.23) £; - -C  x v +  U   •   v)v  -   (v  •   vH 
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whose component form is 

(11.24) Ck - ak^ 

where 

(11.25) a. , = -e, . v + v v - v v 6 

It can be seen  that  this is  identic11   to  (11.13)». 

The  total velocity  and acceleration vectors  of  a material  point 

X +  H  in  a micropolar body  can now be  expressed,  respectively,  by 

(11.26) v(Ql)  -  x(a)  -x-l-^-y-^xv 

(11.27) a(a)  - v(a)  -a+'i-v-^xv+^xv)   xv 

• 
Here v  and v  refer  to  the  centroidal point of  the macrovolume element, 

and  the   remaining terms on  the extreme  rights of   (11.26)   and   (11.27)   are 

the  relative velocity  and  acceleration     about the  centroid.     Equation 

(11.27)   can be  linearized  further by  dropping the  triple  vector  product 

term on   the extreme  right. 
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12.     MATERIAL  DERIVATIVE OF ARC  LENGTH 

In continuum mechanics,   the  time rates of  arc length,   elements of 

surface,  and  volume  in  the deformed   configuration are  often  required. 

Here we prepare the groundwork for  this, while at  the  same  time introducing 

certain new   concepts essential  to the  study  of motion. 

Fundamental  Lemma  1^.     The material  derivative of  the  displacement 

gradient  is   given  by 

(u'iJ ft ^y - "k.K - Vt*!,! 

Th e  proof  of   this   is  immediate since   D/Dt   and 3/3X^ can be exchanged,  i.e, 

D Dxk 

where we  used x.   ■  v. (x,t)  and  the   chain  rule of  differentiation.     Another 

useful expression   that   follows  from   (12.1)   by multiplying it  by dX     is 

(12.2) dxk .  vk>A 

A corollary   to Fundamental Lemma 1   is 

(i2-3) ihv^ ■ mhti*i.k 

which  is  proved by  differentiating   x      X^       - *I,IJ'    Thus 

Now multiply  this  by )L   ^.    This  gives  (12.3). 
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Theorem 1^    Tlie material  derivative of   the square  of  the  arc  length 

2 
ds     Li given b^ 

(12.4) els2 - 2dkidxkdxi 

where 

(12-5) dk£Ev(M)   'l<\,i + \^ 

Is   called  the deformation  rate  tensor. 

2 
To  prove   (12.5)  we   take  the  time  rate  of ds   ; 

,2       D 
DC 

- - - (d^dx^   - 2 H   k d^  -  2vk>£dxkdxi 

(vk,£  +V£,k)d\dX£ 

Hence the  proof. 

In   the material description,   (12.4)  can be written  as 

^   •   2\l\,K\,Ldhd\ 

If  we use 

ds2   - CKLdXKdXL   -   (6KL + 2EKL)dXKdXL 

then 

(12.6) d.2  .  ^d^ -  2EKLdXKdXL 

By   comparing this with  the   foregoing expression,  and  since  d,      and C       and 
K K KL 

E       are  synunetric  tensors,   we  find that 
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(12-7) CKL-2EKL"Zdk.\.KXÄ.L 

This is the material derivative of the lagranglan strain measures C and E. 

2 
When d ■ 0 we have D(ds )/Dt - 0.  Conversely, when for arbitrary 

2 dx, D(ds )/Dt - 0 we must have d ■ 0.  Hence we have 

Theorem 2^ (Kllllng).  The necessary and sufficient condition for 

the macromotlon x(X, t) to^ be^ rigid Is d - 0. 

Note that macrorlgld motion does not Imply mlcrorlgld motion. As 

we shall see helow, the microelements may undergo non-rlgld motions even 

though macroelements may be moving rigidly. 

Fundamental Lemma 2^.  The material derivative of_ the mlcromotlon Is 

given by 

(12.8) x^CX.t) - vkix,K 

This   result   follows  from   (11.ll). by multiplying  It by  x.,   and using   (2.11)   . 

A corollary  to  (12,8)   Is 

which  Is  obtained by  taking  the material  time  rate of  (2.11)   and multiplying 

the result by X    . 

Theorem 3^.     The  material  derivative of  the  mlcrodlsplacement  gradient 

XkK,L  is  given ^L 

(12-lü) Dt  ^kK.^   "   ^kK.L ' VMX«,l + \^mXZKXmfL 

To prove  this, we   take  the  partial  derivative of   (12.8)  with  respect   to X^ 

and exchange  D/Dt  and  9/3)L   since  this  is  permissible. 
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A corollary to this theorem is 

(12.11) if, - v. cU + v. 0  C0dx km m   kli,,iii £ m 

which is proved by taking the material derivative of 

(12-12) ^k  -   \K,Lhdh +  XkKdEK 

and using (12.8),   (12.10),   and Ck -  XMAP« 

Theorem  4^.     The material  derivative  of   the  square of   the  arc  length 

tA   (a)^2    • • k-l (as       )     is^ given by 

^[(ds(a))2]  -   I*M ♦ *%k ♦  (V^ *V)k)Cr]dxkdxi 

(12.13) 

+ 2<^,k + \i    +\r,k^r)dxkd^ +   (\£ + ^k)dVCl 

To prove  thi'j,  we  take  the  material  derivative of 

(12.14) (d8(0l))     -  dx
k
dx

k 
+ 2dx

k
d^ +  d^kd4k 

and use   (12.2)   and  (12.11). 

If we now  introduce   the microdeformation  rates 

(12-15) \i  £  \i + V£,k 

/n    WN - (a)    - f(
a) 

(12-16) ak£m  '   VU,m     '     ak£ -   V,»V 

1  Eringen  [1964c] 
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equatlon (12.13) can be expressed in the form 

£ ((ds(a)) ] - 2[dk£ ♦ a^^Jd^dx^ ♦ 2(bu ♦ alk)dxkd^ 

(12.17) 

In a region of a micromorphic body when 

(12.18) d - 0  , b - 0 

we have the general solution 

(12-19) Vk " \l\ + \     '     \i m \i 

where  UL .   is  an  angular velocity  and b     is  a velocity,  both  of which  are 

independent of  x,  and 

(12.20) ^ «• -^ - • 

Upon substituting  (12.19)   into   (12.16),  we see  that a,        ■ 0.     Conversely, 

(a)   2 

we  can show  that  the vanishing d  and b  is  also necessary  for  D[(ds       )   ]/Dt"0. 

Hence we have proved 

Theorem 5^.     The necessary  and sufficient  conditions   for ji micromor- 

phic  body   to undergo microrigid motion  are 

(12.21) b  -  d - 0 

This   theorem replaces  the well-known Killing's  theorem  (Theorem 2  above)   for 

micromorphic bodies. 

For  linear micropolar bodies,   considerable simplification  is  achieved 

in the  foregoing  results.     To  this  end we  recall  (4.4)   and   (11.18).,  namely, 

(12.22) X, „ "  ^ i/ - Ci „w*w     .     vi 0  " -e, „   v 
kK kK kKM M kS, kHm m 
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Substitution of these into (12.8) and (12.10) and linearization gives, 

respectively, 

(12.23)       xkK  -e^^  ,  XkK>L . -Cj^V^^^ 

Hie  expression of   (12.11)   for a linear micropolar body   is 

(12.24) H;    ■  -e, ,   d[,nv    -  c, „   v       4„dx at-li klm s«, ■        klm m,r  i     r 

or   in vector notation 

(12.25) dt -  -dC   *  v -  C  *  v.  dx -   r    r 

The  material  derivative  of   the  square of  the arc  length  for  this  case  is 

(12.26)    A [(ds(a))2]   -  2[dk£ ♦ a(k0]dxkdx{  ♦ 2^ ♦ «^^C, 

where 

(12.27) b, „       vn  ,    -  f, „   v ,       aln
(0l)  1   -e,      v       f 

ke e,k k£m m       ' ki krm in,!  r 
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13.     RATES OF  STRAIN MEASURES 

Def.   1.     The  i:ime  rates  of various strain measures  are  thü same 

their material  derivat ives.     Th 1US ,  for example, 

EKL 
_  DSKL 

Dt » 
• 

Dt 

'•"                             EKL Dt > \i 
.D£k. 

Dt 

• 
r 

KLM 
.  DrKLM 

Dt > 
• _  D\£m 

Dt 

We  now proceed to give explicit expressions  for  these  quantities. 

Theorem _1.     The  lagrangian strain  rates  are  given  by 

■ 

(13-2) EKL "  -k*S,K*t,l 

(13-:3) £KL- \i\,KXlL 

(13.4) rKLM " bkJlXk,KX£L,M + ^Hm^.-^ilL^.M 

The  proof  of   (13.2)  has  already  been  given  in Art.   12.     To prove  (13.3), 

we  calculate  the material  derivative of 

(13.5) E  ■ i  -6  •x.y  -6 V    ' KL  VKL   KL  nc,KXkL   KL 

Hence 

• • 

EKL " ^KL ' Xk,K xkL + Xk,K XkL 

Upon using (12.1) and (12.8) we obtain (13.3).  The proof of (13.4) is 

constructed similarly by taking the time rate of 
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(13-6) rKLM  ^  "k.K^L.M 

and  using  (12.1)   and  (12,10). 

Theorem 2_.     The  eulerlan strain  rates   are  given by 

(13.7)  e, . = d. „ - (e. v  . + e .v  ) 
ki ki. kmm.i   mlrn.k 

(13.8)  e. „ - b, „ - (e. v „ + e „v . ) kl        kl km ml        ml  m,k 

(13-9) \im ' -\lm 
+  ekrar£m " (Yk£rVr.m + \rm\l  + Yr£mVr.k) 

The proofs of these are somewhat lengthy and will not be given here.  They 

are obtained by differentiating the expressions for the strains and using 

various results obtained in Art. 12,  For the proof of (13.7) see Eringen 

[1962, Art. 22], and for (13.8) and (13.9) see Eringen [1967]. 

Equations (13.2) to (13.4) and (13.7) to (13.9) indicate that the 

eulerian strain rates are not the same as the deformation rates.  If at 

time t the medium is unstrained and the motion is just beginning, we can 

set x * X and 5 ■ H so that 

EKL(X'0) " dk£6kK6a 

(13.10) EKL(X'0) * bk*6kK6*L 

rKI.M(X'0) = ak£m-kK6£LÖmM 

and 

ek>0) ■ dk£ 

(13.11) eu(x.O) - bki 

>. . (x,0) ■ -a, . 
k£m        K£m 
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For  the  infinitesimal  deformation theory,   the  terms  enclosed  in parentheses 

on  the  right-hand side of   (13.7)  to  (13.9)   can be  neglected.     Therefore, 

in  this  case   (13.11)   should be valid approximately  for all  times,  i.e.. 

•ktW   '  \i 

(13.12) ^.t)   - bkt 

VktM^'V   '  -ak£m 
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14.     EXTERNAL AND INTERNAL LOADS 

A material body subject  to  the external  and  internal  forces  undergoes 

a deformation.     These  forces  may be of mechanical,  electrical,   chemical, 

and other origin.     Here we  are  only  concerned with  the mechanical  forces. 

In the particle mechanics of Newton,   the  force F acting on a particle  is 

considered  to be  a  function of  the position  of  the particle  x,   its  velocity 

v,  and  time  t,   i.e., 

(14.1) F -  F(x,v,t) 

When we have a collection of particles, then for each particle we may write 

(14.2) Fa - Fa(xa,va,t)  ,  (a - 1,2,..,) 

In a volume element AV of a continuum,  we have  a  large number of  particles 

interconnected with  such  forces.     If   the  particles of  a continuum are not 

free  to move  independently,   then  the  interparticle  forces  are balanced  among 

themselves  in  pairs.     This  then places   restrictions  on   (14.2)   so  that  the 

number of  independent  forces  is much  smaller  than the  free  collection of 

particles.     In  conformity with  these  restrictions and with  the basic postu- 

lates of continuum mechanics,   the  forces  acting on a body  are  resolved into 

a resultant  force  F  and a resultant  couple  M giv^n by 

(14.3) F ■ I f       ,       M -  y  x  xF *• -a    ' ^   -a   -a 
a a 

The first of these equations gives the vector sum of all forces acting on 

each material point with position x , and the second gives the vector sum 

of the moments of these forces about a point which constitutes the origin 

of x .  In a continuum, the force field is usually considered to be continuous 

and (14.3) may be replaced by 
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(14.4) F - / dF  ,  M - / (x » dF + dM) 
V 1/ 

where dF is the force density at a point x and dM is a couple density. 

This latter terms arises in classical mechanics from coupling various 

particles in the form of doublets or rigid blocks so that some of the 

applied forces on particles produce a couple also.  This physical pic- 

ture can be used in the construction of the theories of micromechanics 

From a continuum viewpoint, whatever the origin may be, the forces 

and couples may be divided into three categories. 

a. Extrinsic Body Loads.  These are the forces and couples that 

arise from the external effects.  They act on the mass points of the 

body.  They appear in the form of body forces and body couples per unit 

mass of the body.  The force of gravity is an example of a body force, 

and an electromagnetic moment in a polarized medium is an example of a 

body couple. A body couple can also arise from the uneven distribution 

of the mass among microvolume elements. Fig. 14,1 and Fig. 14,2. 

b. Extrinsic Surface Loads (Contact Loads) .  These loads arise from 

the action of one body on another through the contacting surfaces.  At a 

small macrosurface they are equipollent to a force and a couple.  Thus, 

for example, forces acting on a macrosurface of Fig. 14.3 are equipollent 

to a force and a couple placed at the centroid of the marosurface element 

Aa, Fig. 14,4. 

When a macrovolume Av is allowed to tend to dv, in general the body 

couple L vanishes since the moment arms cf forces tend to zero while the 

forces are assumed to remain bounded.  Similarly, when Aa is allowed to 

tend to da, the surface couple M will approach to zero.  This is the classical 

picture in continuum mechanics 
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Because of the granular nature of the bodies, the mathematical limits 

dv and da for the surface and volume elements are approximations which may 

not be admissible for various physical phenomena in which the applied loads 

produce effects with some typical lengths (e.g., wave len^-h) that are 

comparable to distances and sizes of the microelements.  In such situations, 

Av and Aa are not infinitesimals, and the granular nature of the bodies must 

be taken into account in some form.  This then requires that we consider the 

existence of both forces and couplesfor macrovolume and surface elements. 

c.  Internal Loads.  Internal loads arise from the mutual action of 

pairs of particles that are located inside the body.  According to Newton's 

third law, the interparticle forces cancel each other so that the resultant 

force is zero. 

In continuum mechanics, the internal effects are found by isolating .1 

small macroelement from the body and considering the effect of the rest of 

the body as forces and couples on the surface of the macroelement as illus- 

trated in Figs. 14.1 to 14.4.  Internal forces give rise to the stress and 

couple stress hypotheses,as we shall see below. 

Let the surface force per unit area at a point x on the surface of a 

body having exterior normal n be denoted by t, ,, and the surface couple 

per unit area by m, ,.  Let the body force and body couple per unit mass at 

an interior point of the body be respectively represented by f and I.     The 

total force F and the total couple M about a point Ü acting on the body 

can be calculated by, Fig. 14.5 

(14.5) F - fet, .da  + / pfdv 

(14.6) M - ic[m,   , + x » t, Jda + /p(l + x « f)dv 
'o (n)  -   (n)     ^ - 

Concentrated loads are imagined as resulting from a limiting process in which 

the surface loads or body loads are distributed over a very small region. 
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15.  MECHANICAL BALANCE LAWS 

The mechanical balance laws - conservation of mass, balance of 

momentum, and balance of moment of momentum - are obtained by a process 

of averaging applied to a macrovolume element containing N microelements 

for which the classical balance laws are postulated to be valid.  Each 

of the microelements is considered to have a uniform mass density, 

I.    Principle of Conservation of Mass.  The total mass of each micro- 

element remains constant during any deformation.  Thus, ii and p 

respectively denote the mass densities of a microelement a  before and after 

deformation, and AV   and Av   their volume. Fig. 15.1, then 

(15.1)       pJa)AvJa) - p(a)Av(a)   ,   (a not summed) 

The total mass of a macrovolume before and after deformations is respectively 

given by 

(15.2) p0AV0 . I     p0  AVo 
a-1 

(15.3) pA  i I     p(a)AV(a) 

These  equations   in effect  define  the  mass  densities  PQ(X)   and  p(x,t)  of  the 

undeformed  and  deformed macrovolume elements.     In view of   (15.1)  we  see  that 

(15.4) p   AV     -  oAv 

If we let AV and AV approach their limiting values dV and dV, then 

PodVo - pdv 

(15.5) 
or 

P0   dv 
-- — - J - det (x^) 



-74- 

which  are  the  equivalent expressions  of  the  principle  of  conservation of 

mass  for  the macrovolume element. 

In Section  2 we  said  that  X is  the position vector of  the  center of 

mass  of  a macroelement.     Accordingly, 

jp(.)?(a)A?(a) = 0 

a 

Upon  using  (15.1)   and   (2.14)   this   gives 

(aMaK  (a) Xjp^'Av^   - 0 

Since X ^ 0, this shows that the position vector x is the center of mass 

of the deformed macrovolume.  Consequently, 

Theorem 1_.  The motion carries the center of mass of the undeformed 

macrovolume to the center of mass of the deformed macrovolume . 

Nect, we calculate the second moments 

(15..) p^v . I^s^'X" 

upon substituting  (15.1)   and   (2.13),   this  may be written  as   (cf.   Eringen 

[1964c]) 

(15-7) hi - WWt 

where 

M«  in ^     A,.  -  ?   (oi)r(a).(a)A   (a) 
(15.8) D Vi       "  4p       £       ^      Av 

a 

Quantities   I       and  i,      are  respectively  called  the  material  and spatial 

microinertia tensors.     Equations   (15.7)  may be  stated  as 

Eringen   [19640] 
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Theorem 2.    The mlcroinertla Is  conserved,  i.e., 

(15-9) £ ^vw -0 

Using (12.9), this may also be expressed as (Bringen [1964c]) 

- + i, „ v - i, v„  - i .v,  =0 
3t    V.l,m  m   km Im        ml  km 

In a micropolar continuum, a combination of i  and I  occur more 

frequently.  These are 

(15.10) 

JKL " 1MM6KL " Ha 

^k«.  :   imm<5ka       ikll 

These  tensors  are  identical  to the  inertia tensor encountered in rigid- 

body  dynamics. 

Upon  linearization  and using   (4.14),   (15.7),  and  (15.11), we  get 

(15-11) JKL   '  Jk*6Kk6L* 

Global balance equations  for mass  and mlcroinertla are  obtained 

by  integrating  (15.4)   and   (15.7)  over  the volume of  the body.     Thus 

(15.12) jo dV    -  /pdv 
V   0     ü        (, 

(15-13) /VKL^O " /pikAkXudv 

where V  is   the  undeformed volume  and  1/ is  the deformed material volume. 

11. Principle  of  Balance of Momentum.     The  time  rate  of  change of momentum 

is equal  to  the sum of  all  forces  acting on £ body. 
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The mechanical momentum of a microelement Av is  the product of 

its mass with  the velocity,   namely,  p       v      Av       .     The  total momentum of 

a macroelement  is   the vector sum of  the  micromomenta  of  its microelements. 

For a micropolar body we have 

Ap -  ^(a)y(a)Av(a)  -  Ip(a)(y+  OAv 
a a 

(a) 

J   (a)A   (a) r   (a)rA   (a) « YIQ    'Av        + v  x £p       ^Av 
a a 

The  last  term vanishes  and  in  the  limit we write 

dp ■ pvdv 

The  total momentum of  the body  is  therefore  given by 

(15.14) p ■ /pvdv 
1/ ' 

The principle of balance  of  momentum is  expressed by 

(15.15) - pdv (n) 
•   da + /pfdv 

1/  " 

Here t/ .. is the surface traction per unit area acting on the surface of 

the body S with an outward directed normal n so that the surface integral 

is the vector sum of all forces acting on S.  The vector sum of the body 

forces is given by the volume integral on the right.  Equation (15.15) is 

none other than that given in classical continuum mechanics. 

III.  Balance of Moment of Momentum.  The time rate of change of moment 

of momentum about a^ point is equal to the sum of all couples and the moment 

of all forces about that point. 
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The mechanical moment  of momentum of a microelement  is  defined as 

the moment of  its momentum,   namely, 

x(a)   «  p(a)v(a)Av(a) 

The   total moment  of momentum of a macroelement  is  calculated by 

r   (a) (a)   (a) 
dM - lfy      x  pv  yyv   'Av 

a 

Ov(a)Av(a) 

- !(«♦$)   x p<a)(v+ ÖAv(a) 

a 
Upon   carrying out  the multiplication, we  get 

Am-  x  * v^(a)Av(a)  ♦ [«   x p(a)Uv(Ql) 

a a 

C   (a)'     (a) r   (a)rA   (a) 
+ »  x  2,P       §Av -  y "  2,P       CAv 

a a 

The  last  two summations vanish since   5 is  measured  from the  center of mass 

of  the  deformed macroelement.     Upon  carrying the expression   ^ from  (11.20), 

in  the  limit we may write 

(15.16) dm -  px *     vdv +  podv 

where 

(15.17) poAv i  lo(a\  *   (v  x   OAv(a) 

a 

is  called  the  intrinsic spin.     In  component  form this   reads 

(15.18) vJkJlvk 

where we used (15.8) and (15.11). after expanding the triple product. 

The total moment of momentum of a macroelement, therefore, is the 
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vector sum of its  angular momentum and the   intrinsic spin.     The total moment 

of momentum of a micropolar body is  now calculated by 

(15.19) M - /(x x  pv + po)dv 
1/ 

The  principle of moment  of momentum  is expressed by 

(15.20) 

— /(x x  py + pg)dv -  ^(x x  t,  ,.   +  m,  ,)da 

+ /p(l + x  x   f)dv 
1/ 

The  right-hand side gives  the  sum of  all  moments   about   the  origin  as  in   (14.6) 
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16.     STRESS AND COUPLE STRESS 

The  state  of  Internal  loads   and  their  connections  to surface  loads 

may  be  found by  applying  the  principles  of global balance  of momenta to 

small  regions  fully  and partially  contained  in  the  body,  Fig.   16.1.    To  this 

end,  we first  consider a small macrovolume,  v + s,   fully contained in  the 

body.    At  a point  x of  s,   the  effect of   the  remainder of  the body  is equi- 

pollent  to  a surface  force  per unit  area,  t.   ,,  called the  stress  vector, 

and  a couple per unit  area,   m,  ,,   called the  couple  stress   vector      These 

loads  depend on  the position  x,  time  t,   and  the orientation  of  the surface 

s   at  x which is  described by  the exterior normal n  to s at  x.    This latter 

dependence  can be  found explicitly  by  applying  the  mechanical principles of 

momenta to  a region v + s  adjacent   to  the surface  of   the body      This  approach 

does  in  fact  also provide   the  connection of surface   loads   to the   internal 

loads.    Consider  a small  tetrahedron with  three  faces   taken  as  the coordinate 

surfaces  and  the  fourth  face  being  a part of   the surface of   the  body.   Fig. 

16.2.    We  denote  the stress  vectors  on  any  coordinate surface x,    ■ const, by 

-t.    and on s by  t,   ,.     The  equation of  balance  of momentum   (15.15)  can be 
-k -(n) 

applied on   this   tetrahedron.     Using  the  mean-value   theorem  to estimate  the 

volume and  surface  integrals,  we write 

d     * * * * * 
—  (pv Av)   ■  t-   >. Aa -   t. Aa,   + pf  Av at       - • (n) ~ K    k. 

where  the  quantities marked with  asterisks are  the  values  of those without 

asterisks   at some points  of  v + s       The  volume  is  denoted by Av  and the sur- 

face  areas  by Aa,   and Aa.     The mass  is   conserved so   that 

(16.1) — (pdv)  -  0 



-80- 

Upon dividing both  sides of  the  foregoing equation by Av and letting  Aa 

and Av approach zero, we  see  that Av/Aa ♦ 0   and we  obtain 

(16.2) t,  ,da -  t, da. 
(n) ~k    k 

The four surfaces  of  the  tetrahedron  form a  closed  surface,  therefore,  the 

limit  of  the  sum of  area vectors  da,       must   add up   to da-     Hence 

(16.3) da - nda - da^ 

From this we  get 

(16.4) da,   - n. da 

Substituting  this  into  (16.2) we  get 

(16-5) Un)  ' *k\ 

where t,   is  independent of  n.    Thus we  found   that  the stress vector  t .   ,   is 
-k                 r (n) 

a  linear  function of  n.    At   two  sides  of a  surface, n  changes sign.     From 

(16.5)  we  therefore  see  that 

(16.6) 
^-n)   - "?(«) 

which proves   that  the  stress  vectors on oppos ite sides of   the  same surface at 

,a   given  point are equal  in magnitude  and opposite  in  sign. 

The application of  the above method,   with  the  use  of  the equation of 

balance  of moment  of  momentum  (15.20)   leads   to 

(16.7) ■ (n)   ■  Vk 

(16.8) m,     ,   -  -m,   , 
~ (.-n) (n) 
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The  concepts of stress tensor t, p  and couple  stress  tensor m.     now follow 

from the  decompositions 

(16-9) h - \zh 

(16.10) ^ - ^1^ 

Thus  t       is  the  I component of  the  stress   vector   t,   which  acts on  the 
K. It "■ K 

surface  x,   =  const, and m,      is   the  I       component of  the  couple stress  vector 

which acts on  the  same surface.     The  positive directions  of  t       and   those 

of m. t   are shown on Figs.   16,3  and 16.4  respectively.    We  use double-headed 

arrows  for UL    . 

From  (16.5), (16.7),   (16.9),  and  (16.10)  it   follows  that 

(16-11) l(.)   -  \i\h 

(16.12) m(9)   - m^n^ 

It is   thus  clear that  the  moment vectors  for  the  couple stress  have 

the  identical sign  convention  to  those  of  the  stress vectors.     The  plane of 

each  couple  is of course perpendicular  to the  couple vector,  and the  direc- 

tion is   as described  bv  the  right-hand screw   rule. 

The expanded   form of  the  components  of   t,  .   and m,   .   in rectangular 

coordinates  are 

t,   .-tn+tn+t     n (n)x        xx x        yx y zx z 

(16.13) t, t«tft+tn+ta 
(n)y       xy x       yy y       zy i 

t,,     "t    n    +t    n    +t     n 
(n)z xz  x        yz y zz z 
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m,,     -mn+mn+mn (n;x        xx x        yx y zx z 

(16.14) m,,     "mn+mn+mn (n)y xy x yy y zy  z 

m (n)    »mn+m    n+mn z xz x yz y zz  z 
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17.     LOCAL BALANCE  LAWS 

Local balance  laws  are obtained by  postulating  that  the  global 

balance  laws  are  valid  for every part of   the body.    For the  conservation 

of mass, we  convert  the  volume  integral  over  \l to V.     T>us 

(17.1) /(p     -  pJ)dv -  0 
V 

where 

(17.2) J   E det ^y 

is the jacobian of the transformation. Postulating that (17.1) is valid 

for every part of the body, we obtain the equation of local mass conser- 

vation. 

(17.3) po/p  - J 

Another form often used  in hydrodynamics   is obtained  from this by   taking 

the material derivative  of   (17.3).     Thus 

pj + pj  - 0 

and we  can show  that   (Eringen   [1962, Art.   19]) 

J  " Jvk,k ' 0 

Consequently 

p ♦ Pvkjk =  0 

or since 

p       n+ P'kVk 
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thls  reads 

(17.4) lt+(pV'lc 

This  is   the celebrated equation of  continuity.    One may,   of  course,  equally 

employ   (17.3)   in place of   (17.5).     Alternative  forms which  follows  from  (15.4) 

are 

(17.5) p0dV0  -  pdv     .      ~ 0 

An expanded form of   (17.4)   in  rectangular  coordinates  is 

3(pv  )        3(pv )        3(pv  ) 
(17.6) i£. + _JL.; 

3t 3x 9y 3z 

where   (v   ,  v  ,   v )   are  the  rectangular  components  of  the   velocity  field. 

Equations  of  local balance   for  the microinertia are  already given by 

(15.7)   and  (15.9).     For the  linear   theory using  (15.11)  we  get 

Djia (17.7) -~ - 0 

The  local balance of  momenta  follows  from  (15.15)   and  (15.20).     Upon 

carrying out  the  indicated  differentiation  and  using  (17.5).,  and writing 

a = v,  v  ■ x,we  see  that 

(17.8) /padv - it,   .da +  /pfdv 
V~ S(n) V 

(17.9) /(x  x  pa +  po)dv - ^(x  *   t,   ,   + m.   .)da + /p(t  + x ><   f)dv 
V - ^  - (n)        ~(n) ' 

These are  other  forms  of  the  global balance  of  momenta.     We now   take  V + S 
from 

to be a  small  internal portion v +  s  of   the body.     Substituting^ (16.5)   and 

(16.7)     we write 
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(17.1Ü) /padv - ^t n, da + /pfdv 
v      s        v 

(17.11)   /p(x x a f ö)dv - ^(x x t, + m,)!^da + /pU + x < f)dv 
v s v 

In rectangular coordinates, the Green-Gauss theorem is expressed as 

(i7.i2) h^\da • hk k
dv 

s v     ' 

If we now  apply  this  theorem to   (17.10)   and   (17.11)   to convert  the surface 

integrals   to volume  integrals,  we  obtain 

(17.13) f[t.   k +  o(f -  a)]dv -  Ü 
v       ' 

(17.14) /[m,   ,   +  i,    x  t,   +  p(£  - ö)]dv 
V 

+ /x  x   [tk  k +   p(f -  a)]dv ■ Ü 

For  these  equations  to be valid  for any  arbitrary volume v  in  the  body, 

the  necessary  and  sufficient  condition  is  the  vanishing of   the  integrands, 

Hence 

(17.15) ^k k +  f (-  " v)   = 0 

(17.16) 'J'k k +  ^   * tjj "•" PU - C) " 0 

Note  that   the second integrand  in   (17.14)  vanishes by virtue  of  (1,7.15). 

These equations  are  the  expressions  of   the  local balance of  momenta.     They 

are  identical  to  those  given in  Bringen   (1962,   eqs.   (32.7)   and  (32.8)]  with 

the exception of  the spin inertia  term po.    This  term arises  from  the postulate 
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of an indenendcit microrotntlnn.  In fact, without such an internal degree 

of freedom, the existence of m,   and I is-questionable.  Upon substituting 

(lb.9) and (16.10) into (17.15) and (17.1b), we obtain the component form 

of these equations, namely. 

(17-17) ^k.i + ^k-V •0 

(17.18) m0,    „  +  c.      t      + p(l.   -  o, )  =  U 
lktl kmn mn k k 

These are the   fi rst  and  second  laws  of motion of  Cauchy which express   the 

local balance  of momenta  for micropolar bodies   .     When   the  body  is  nonpolar, 

that is,  when  o ■ ■.   " i ■ 0,   then   (17.18)   gives   the  classical  result 

which expresses  the  symmetry of  the  stress   tensor.     For micropolar bodies, 

we  see  that  the stress  is   in  general  nonsymmetrical  and  the  new set  of  differ- 

ential  equations   (17.18)   must  be  employed  replacing  (17.19). 

In  rectangular  coordinates,   the expanded  expressions  of   (17.17)   and 

(17.18)   are  recorded below 

3t at 3t 
—^- f —^ + —^ +   p(f     -  v  )   =   0 

3x 3y z xx 

it 3t 9t 
(17.20) -r—t- + —XZ + —tt +  P(f    - v >   -  0 

dx dy 3z y 

3t It JI 
xz yz z^ 

(f     - v  )   =  ii 
3x y JZ z Z 

If we  disregard the  relation  of  o.   to given  by  (15.18),   these balance 

laws  are valid  for  the  nonlinear  theory, and  (17.17)   and   (17. .8)   are exact 

expressions,   cf.   Eringen  and Suhuoi   [lybAa & b]. 



dm dm 9m 
^* + Ji + _**+ t 

dx oy dz yz 
t       + p(«.     -  0   ) 

zy xx 

dm dm dm 
(17 21)      —SL+ —n.+ _2X 
U/.^i; 3x 3y 3z + t 

zx 
t       + P(£y  - Oy) 

xz 

3m 3m 3m 

3x 3y 3z xy 
t       + p(£     -  o   ) 
yx z z 
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IS.  CONSERVATION OF ENERGY 

An Important axiom of thermomechanics is the principle of conservation 

of energy which may be stated as follows: 

IV.   Principle of Conservation of Energy.  The time rate of change of the 

sum of the kinetic energy and the internal energy is equal to the sum of the 

mechanical energy, heat energy, and other energies.  Here we exclude chemical 

and electrical energies so that we may express this law mathematically as 

• 
(18.1) K + E - W T (2 

Here K, E, W and Q are, respectively, the kinetic energy, the internal energy, 

the work of applied loads per unit time, and the heat energy.  For a micro- 

polar continuum, these quantities may be expressed as: 

(is.2) K"7^Vk + WkVdv 

(IS.3) E ■ /pedv 
1/ 

r. (IS.4) W - |(t^vk ♦ .lkvk)d.| + Jp{£kVk + Vk)dv 

(IS. 5) £ - ^q, da + /phdv 
S V 

The physical meaning of some of the terms occurring in these equations is 

known to us in the classical continuum.  For example, the first term in the 

integrand of (IS..'.) is the kinetic energy of the macromotion.  The second 

term is, however, new and it is the kinetic energy of the microrotation.  In 

(IS.3), c is the internal energy density per unit mass.  In (18.4), the surface 

integral is the work of surface tractions and surface couples per unit time, 

while the volume integral is the work of the body force and body couple, per 

unit time. 
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Finally,   in   (18.5)   the surface  integral  gives   the heat  input,   and  the volume 

integral   the  heat source. 

The  equation of  local energy  balance  is  obtained by  postulating  that 

(18.1)   is  valid  for any arbitrary  volume  contained  in  the  body.     To  this 

end we  first  carry out  the  indicated  differentiation with   respect  to  time 

for K  and  £.     Thus 

(18.6) K ' /o(akvk +  Vk)dv 

(18.7) £ - /pcdv 
V 

where,   in  anticipation of  the  local  laws,  we employed  the  equations  of 

conservations  of  local mass  and  inertia  (17.5)-,   (17.7),   namely, 

(18.8) -Ü- - 0       ,       -rr1 - 0 Ddv * Dt 

Next we  convert   the surface  integrals  of   (18.4)  and  (18.5)   into volume 

integrals  by  use  of  the Green-Gauss   theorem.     Hence 

W ■ /(tUcvM + ■ikvk.t)dv + ^(ttM + pfk)vk + (-ik,l + Dr:.)vk]dv 

0. ■ !<%  k ♦ Ph)dv 
1/    K»K 

Lpon  carrying  (18.6),   (18.7),  and  the  above equations  into   (18.1),   and using 

the equations  of  local balance  of  momenta  (17.17)  and  (17.18),  we  obtain 

/(pe   -  t., v,    „  + e.      t_v.   - m.. v     „  - q,   ,   -  Dh)dv - 0 i, Ik k,i kmn mn  k ilk k,£.       ^k,k 

This  is  assumed  to be valid  for every  part  of  the body.     Thus  we muat have 
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(18.9) pe  -  t£kvk(£  -  e^t^ + m£kvk(ll ♦ qk>k ♦ ph 

This  is   the  differential  equation of  the  local balance ai. energy  of  a micro- 

polar body   .     In expanded  form it  reads 

3v 3v 3v 
pc - t     -5»+t     -*+ t    -^ 

xx     3x yx     3y zx     dz 

3v 3v 3v 
+1      —^- +  t      —2- +  t      —^■ 

xy     3x        yy     3y zy     3z 

3v 3v 3v 
z z z 

+1      -r^ + t      — + t      —7 xz      3x yz      3y ZZ      c»Z 

-(t        -   t     )v     -   (t       -  t  _)V     -   (t        -   t     )v 
yz zy     x zx        xz    y xy        yx    z 

(18.lü) ^ 3v 

 x  .  x 
+ m      —r- + m      -n~ + m      —— 

xx     3x yx     3v zx     dz 

3v 3v 3v 
+ m      —r^- + m      —^- + m      —■ 

xy     3x yy     3y zy     3z 

3v 3v 3v 
 ■ z z 

+ m      —r- + m      —r- + m      —:— 
xz     3x yz     3y zz     dz 

3q aq aq 
+-^ + —-^ + —2- + ph 

3x dy 3z 

We  also note  that 

3e       3e 3e or. 
(18.11) £;""Tr + "^— v    -t"— v    +T— v ,'-LO,x-L' 3t       3x    x       3y    y       3z    z 

Again the energy balance equation (18.9) is exact in this form and is 
valid for the nonlinear theory- 



-91- 

19.     PRINCIPLE OF ENTROPY 

For  certain  classes  of  physical phenomena within  a  range of expected 

changes,   a material body  is  characterized by  certain  constitutive equations. 

These  equations  define  an  ideal  material approximating  the   real material 

under  consideration.     For any  thermomechanical  change,   the  constitutive 

equations   assumed must not violate  the second law of  thermodynamics       In 

continuum mechanics,   this  law may be  stated as  follows: 

V. Principle  of  Entropy   (Claufiius-Uuhem  Inequality) .     The   time   rate  of 

change  of   the  total entropy H  is^ never  less   than  the  entropy  influx through 

the  surface S of_ the  body  and  the  volume entropy  supply   B ^in   the body.     T.us 

is  postulated  to be  true  for  all  parts  of  the body  and  for  all  independent 

processes   (Eringen   [1966c]). 

Accordingly we write 

(19.1) f   r -TT- -  B  -  is   •   da >  0 
dt I " 

where r so defined is the total entropy production.  For simple thermomechani- 

cal processes we have 

(19.2) 

(19.3) 

(19.4) 

where n, h, q and 6 are, respectively, the entropy density, heat source, heat 

vector, and the absolute temperature.  Substituting (19.2) to (19.A) into (19.1) 

gives 

H =  /pndv 
1/ 

b t    h     A s / e dv 

s q 

■ e 
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(19.5) r E -{L /pndv _ ;k dv _ ^ Ji da   > 0 

Using the Green-Gauss theorem to convert the surface integral to a 

volume integral and carrying out the differentiation with respect to time, 

we get 

(19.6) Hpn ■■ (-^).k - ^]dv > 0 

Since  this  is  to be  valid  for all parts  of   the  body,  we must  have 

(W.7) pn - (^).k-|i0 

This  is  the well-known  Glausius-Duhem inequality  of  classical  continuum 

mechanics.     In micropolar bodies,   this  is  considered  to be  unchanged. 

Upon substituting h  solved  from  (18.9),  we  can  rearrange   (19.7) 

into  the  following  form 

(19.8) PY  s P(n - i) ♦ 4 t. .v.  .   - 4 C-      t    v. 6 6    k£  £.,k       6    kmn mn k 

+ em£k\,£ +~2 qke'k-0 

Ö 

Still another  form,   convenient  for some  cases,   is   found by  introducing  the 

Helmholtz   free energy 

(19.9) V - e  -  on 

Hence 

(i9.io) PV -r - f-(^ + re) + i t. 0v0      - -   ,     t     . 
6 6    k£   £,k        6     kmn mn  k 

+ e m£k\,£ +~7 V'k-0 
8 
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The Clauslus-Duhem inequality (19.8) or (19.10) is postulated to be valid 

for all independent thermomechanical changes. This implies that we must 

know the independent variables which affect Xi n. tj.« t nVo» and q. at the 

outset.  This in turn requires writing constitutive equations for these 

variables. An example of this is to be found in the following article. 

We also note that the _ntropy inequality (19.5) can be shown to 

lead to an inequality restricting the normal component of q/9 on the surface 

of the body (Eringen [l()66c]) ,i .e. , 

q 
(19.11) [T] ' n ' 0    on S 

where  a boldface bracket  indicates  the  difference  on   the quantity enclosed 

calculated  from two different  sides  of S,  on S. 
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20.     THEORY  OF MICROPOLAR  ELASTICITY 

A micropolar elastic solid  is  distinguished  from an elastic solid 

by  the  fact  that  it   can support  body  and surface  couples.     These  solids 

can undergo  local  deformations  and microrotations.     Such  materials  may 

be imagined as  bodies which  are made of   rigid  sliorL  rylinders  or 

dumbbell   type  molecules. 

From a  continuum mechanical  point  of  view,  micropolar elastic  solids 

may be  characterized by  a set  of  constitutive  equations which  define   the 

elastic properties  of such materials.     A  linear  theory  as  a special   case of 

the nonlinear   theory  of microelastic solids  was  first  constructed by  Eringen 

and Suhubi   [196Aa,b].     Later,   Eringen   [1965],   [1966]   reorganized  and  extended 

this  theory.     Here we  give a self-contained  account of  this  theory. 

In  linear micropolar elasticity,   the  strain measures  are   (cf.   equations 

(4.17)   and  (4.18)) 

(20.1) e, „   -  e, .  + e, „   (r    -  $  )  -  u.   .   + £„.   * 
kl ki        kim    m        m lvk ikm m 

(20.2) v. .     -   e,.   $ 
kim k£n n,m 

Since  only  the  nine  components   i>,    0   of  v are  independent and non-vanishing 

(cf.   equation   (4.37)), we may  instead of   > use  the  axial  tensor  i>,        for 
K. x in K j * 

simplicity.     Upon  arbitrary  rotations  and  reflections  of   the  spatial  coordinates 

represented by Q, „,   i.e., 

(20.3) ^  -  2k|,| 

(20.4) Q.   Q      - 0    0      -  6 .       det  0      -   '1 ' \i^mi      nkSa        km      ' "k« 

and the tensors c,  and $,   transform according to 
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i 

t      * Q    c    0 
ki     SmwKTta 

(20.5) 

where  in  the  last  equation  the  plus  sign  is   for  det Q      ■ +1  and  the  minus 

sign for  det Q.     =  -1.     This  is  because  *.    is  an axial vector.     Equations 

(20.5)  express  the   fact   that both  c. .   and  0.        are ob lectlve   tensors   and 

are  appropriate  for  use  as  independent  constitutive variables       To  this 

list of variables we  also  include  the   temperature  6 so that   the material 

properties  of  these  materials may  depend on  the   temperature  as well.     The 

constitutive  dependent  variables  are 

\i' \i> V v and n 

We now propose a set  of  constitutive  equations  of  the  form 

^1 S VfrS'   *r.s'   Ü) 

"kl * VCrs'   *r.s'   e) 

(20.6) qk -  Gk(crs   .   ^^   6) 

ii ' y(f     , *     , e) 
rt r.s 

n - H(i      ,  (>      ,6) 
rs r, s 

The above equations are legitimate for linear homogeneous materials whether 

Isotropie or not. For nonlinear Isotropie mattri.^ t they are acceptable in 

form. However, since we are employing the infinitesimal strain measures, a 

nonlinear  constitutive   theoiy  in  terms  of   linear  strain measures would  be 
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inconsistent.     For  the nonlinear  theory,   the  reader is   referred  to Eringen 

and Suhubi   [1964a (, h]. 

The  constitutive equation  (20.6)   must be  consistent with   the second 

law of  thermodynamics  as  expressed by   (19.10).    Thus,   upon  substituting 

(20.6) into   (19.10), we have 

' * (^ ^ + ^ '^ + "^ + r,6) + i '"'" 
(20.7) . . 

+ ?\£^,k + 7V'k^0 

Consistent with  the  linear  theory we write 

(20.8) 

—    (A )     «     4 

ek£  ^  Vk,e   ~  ekimVra 

The  inequality   (20.7)  is  postulated  to be valid  for all  independent processes. 

• • • 
Here e. » *k «.♦ e an^ e,W can ^e var^e^ independently. Since this inequality 

is linear in all these variables, we must set the coefficients of these varia- 

bles equal to zero.  Hence 

at 

(20-9) V-pT^— i,k 

qk=0 

at 
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We  therefore  see   that  for ji micropolar  elastic solid stress,   the   couple stress 

and entropy  denslty  are derivable  from a^ potential  and  the heat  vector vanishes. 

Since we  did not   consider  the  temperature  gradient, we have no heat  conduction. 

Nevertheless,   the   free energy   I  and  consequently  the material moduli will 

depend on  the  temperature  6.     Since  all   terms  in   (20.7)   vanish,  we  have  the 

entropy production density y  also vanibhing.Thus.the  micropolar elastic solid 

is  in  thermal equilibrium. 

Here we  are  concerned with  the  linear  theory.     We  therefore  consider a 

polynomial  for   # which  is  second  degree  in   the strain measures   t,      and  $,      ,   i.e., 

P* " Ao + \i\i + 2 AkÄmn£mn+      \i\,i+ 2 \lmn\ti* m,n 

(20.10) 

+ C f     (t 
k8.mn'klc  m,n 

where A, A, , A, .  , B. , . . . are functions of 6 only.  Since <(). is an axial 
fourth and the 

vector, upon a reflection of the spatial axes the^last termswill change sign 

while Lhe other terms do not.  For the function r'  to be invariant B  = 0, 

C, .  "0. We further note the following symmetry conditions which are clear 
K».mn 

from various summations in (20.10) 

TcHmn   mnk£ k^mn   mnk£ 

which shows that for the most general mir/oj3olaj-_ anisotropic elastic solid, 

the number of A. „  and B , „ is 45 each■  In addition, we have nine A, , 

which give rise to an initial stress in the undeformed state of the body. 

Upon substituting (20.10) into (20.9). and (20 9)2, we obtain 

ki Kl ikmn  mn 

(20.13) m,  - B„,  * 
kl ikmn  ni,n 
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These are the linear forms of the stress and couple stress constitutive 

equations for the anlsotroplc micropolar elastic solids.  When the Initial 

stress Is zero, then we must also have A. . ■ 0.  Thus, for the micropolar 

solid free of Initial stress and couple stress, we have 

k£   Tcimn mn 

(20.15) m,  - B.. $ 
Teil    Ikmn  m,n 

Various material symmetry conditions place further restrictions on the con- 

stitutive coefficients A,,   and B„,  . These restrictions are found in 
ikmn ikmn 

the same manner as In classical elasticity.  Here we obtain the case of 

Isotropie solids.  If the body la Isotropie with respect to both the stress 

and couple stress, we call the solid mlcroisotropic■  In this case, the 

constitutive coefficients must be Isotropie tensors.  For the second and 

fourth-order Isotropie tensors, we have the most general forms 

A. . - A6. , A. .   =A16, „6  + A06, 6.  + A-6, 6. \i ki'    lamn   1 kH mn   2 km in        3 kn £m 

(20.16) 

B, ,       =  B-6. .6       +  B06,    6,    + B-6.    6. 
kimn 1 kü mn 2  km Hn 3 kn  im 

where A,  A.,  A?,  A  ,   B1,  B  ,   and  B.  are  functions  of   8 only       In  this  case 

then,   (20.12)   and  (20.13)   take   the  special   fcrms 

(20.17) tk£-A\^A1rrr6k£ + Vla + A3e4k 

(20.18) V-^W Vr.rWf,k  +  Vk,* 

For  vanishing initial stress  A =  Ü.     Introducing 
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(20.19) 

A.   ;   A   ,       A«   =   u +  <   ,     A.   =  vi 

B1       a   ,       B2   £  Y ,     B3  =   ß 

the above equations  can be written  as 

(20.20) tki -  XcrAl ♦   (u + <)eki ♦  uhk 

(20-21) \tm »♦r.At4 ß*k.£ + Y*£.k 

For  the  free  energy  In  this  case we   find 

p'-  2   tAekkeU+  (lJ+  <)ek£ek£+  "«ki'lk1 

(20.22) 
.1 

2   (a*k.kV£+  ß*k.£^.k+ ^k.A.^ 

An alternative  form to  (20.20)   to  (20.22)  Is 

(20.23) t, .  -  Ae    6      +  (2u + <)e, .  + <e. .   (r    - ♦) 
ki rr kl ki klm    m        m 

(20.24) m, .  -  aO      (5. „+   ß*.    .  +  Y# ■M -  a$r,rÖk£+   B\.£ +  Y^.k 

(20.25) pf - i [Aekkeu ♦  (2u +  Oe,^] ♦ .(rk -  ^ (rk -  ^ 

+ 2  (a*k.k^.£+  ^k,£*£.k+Y\.A.£) 

We note the difference between Isotropie micropolar elasticity and classical 

elasticity by the presence of four extra elastic moduli, namely, <t a, 6 and 

Y. When these are set equal to zero, the above equations (20.23) to (20.25) 

revert  to Hooke's  law of  the  linear  Isotropie elastic solid. 
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21.  RESTRICTIONS ON MICROPOLAR l.LASTIC MODULI 

The stability of materials requires that the stored elastic energy 

be nonnegative.  This condition is also essential for the uniqueness of 

the soJutlons.  This requirement places certain restrictions on the micro- 

polar elastic moduli.  The following theorem, Eringen [1966a].provides these 

conditions for * independent of 6. 

Theorem.  The necessary and sufficient conditions for the internal 

energy to be nonnegative are 

0^3X + 2ii+t<,  0j_v  ,  0<_< 
(21.1) 

0 < 3a + 2>    , -Y •■ ß < ^, 0 • 

The sufficiency of (21.1) is proven by observing that when these ineaualities 

hold,each one of the following energies constituting the internal energy 

density is nonnegative 

(21.2) ^ eE + £R + eM 

where 

PeE   £   2   tXekkeU+   (2lJ + <)eklie£k] 

(21.3) 0eRE  *(rk-*kHrk-   V 

PF'M '   2   (^k,k^,£ +  ß\,£*£,k+  ^l.k^l.^ 

The  fact  that  pe.,  is  nonnegative under  the  conditions   (21.1),   and  (21.1)„ 
t. 12 

is well known  for  the  classical elasticity.     It  is  simple  to observe  that 

pf     is  nonnegative  for  r,   f   (l>.   whenever  < j_ 0.     To see  the same  for pe   , 

we write  this  expression  as 
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(21.4) 

where 

^M-T(3a+ß + ^k.kV+ (Y " ß)*Ik>il*(k.t] 

+   (^  + b)^(k,£)   -T*r.r\£][*(k.£)  -T*8.36k£] 

(21.5) 

'(k.O   E  2   UM + •l.^ 

'[k.l] ä 2 uk,£ " *e,k) 

From  (21.4)  it  is  clear that when 

(21.6) 3a+ß + Y^0     ,        >-ti_>.0     ,       Y  + ßj_0 

we have  otxt >  0 so  that   (21.1)   are sufficient  for PEW  >  0. 
M — M — 

Conditions   (21.1)   are also necessary   for the nonnegativeness  of pe. 

To prove   this,  we  recall  that e      ,  r,   -  4).   and $.        can be  varied  independ- 

ently of  each other.     Since  the   above  three  energies  are  uncoupled with 

respect   to  these variables,  each   one of   these energies  must be nonnegative 

independent of  each  other.    The   fact  that   (21.1).   and  (21.1).  are necessary 

for  oe     >  0  is  known   to us  from  classical  elasticity.     Excluding  the   case of 

r,   ■  0.    (indeterminate couple s tress  theory), we see  that   pe    is  nonnegative 

if  and  only if   < ^_ 0.     For  the   case of   r,   ■   $,, by  replacing 2- +  *  by a 

new modulus  2u we shall have  <   disappear  from  the   constitutive  equations. 

Thus,   it  remains  to prove  the necessity  of   (21.1)   for the  nonnegativeness 

of PF-M.     To  this we write   it as   a quadratic  form in a nine-dimensional space, 

i.e.. 

(21.7)        P^-^.y^j       . aij   =  aji       • (i.J  =  1,2,       ,9) 

where 
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yl   "   n.l     '      y2   E ^2.2    •       y3 5  ^3,3 

y4   -   ^1.2     •       ^5  E  *2,1     "       y6  E   *2.3 

y7 ; *.. -)   •    fa 5 ♦* i   •    yc (21.8) '7       lf3,2     *       '8  "  *3,1     '       '9  "   1,3 

a11 - a22 - a33 - a + 6 +    y.      a44 - a..,.  - a66 - a77 - a88 =  a99  - y 

a12  - a^ -  a23  -  ex .       a^ -  a67  -  a89 

all  other a,     =  Ü 

The characteristic values a of a  are obtained by solving the equation 

(21.9) det (a.. - a6 .) = 0 

The nine roots a, of this equation are 

a1 = a2 = a3 - Y - ß        > a^ - a. « a6 - a7 = a8 « Y + ß 

a9 - 3a + ß + Y 

In  order  for  peM ^_ 0   to be  satisfied  for all  y   ,   it   is necessary   (and  suffi- 

cient  that.)   (21.7)   be  an ellipsoid in nine-dimensional space,   i.e., 

Y-ß^0     ,       y+ß^O     ,       3a + ß+Y^0 

This  set  of conditions is  the  same as  the  last   three   conditions  of   (21.1). 

Hence  the  proof of   the theorem. 

The nonnegative character of the  internal energy  density has  important 

implications  in regard to uniqueness   theorems   in both  static and dynamic micro- 

polar elasticity.     For these  and  other  important  results  see Eringen   [1966i,hi- 
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22.     FIELD EQUATIONS,  BOUNDARY AND INITIAL  CONDITIONS 

The  field equations   of linear micropolar elasticity  are obtained by 

substituting  (20.23)   and   (20.24)   into   (17.17)   and  (17.18).     Hence 

(22.1) (X + M)«Mk ♦ (u  + <)ukM + «^.^ * P(fk - uk)  - 0 

(22.2) (a ♦  BUitlk * Y*k>u + <^mumf, - 2<*k +  p^ -  j^)   -  0 

where we  have   taken  j. .  ■   J^i,»  ^or  the microisotropic solid.     In  the   linear 

theory,   p  and  J   are  considered constants  and  the accelerations  ii   and  ij. 

are  calculated  by their approximate expressions 

2                                   2 

(22.3) B.   -  1      , ♦.   •  1 

The  vectorial   forms  of  these equations   are  found  to be convenient  for  the 

treatment of problems in  curvilinear coordinates.     These are  readily  obtained 

from the  above  equations  by  simply multiplying them by i,    and observing  that 

(22-4) •Wk"-'»     '      WM4k"YM 

u
k,uik - vv . u - v ,< v * u 

where V   is  the  gradient operator  so  that 

7(> 5  grad $      ,       V •  u  ^ div u    ,        V x  u 5 curl u 

Hence 

(22.5) (A +  2u + <)VV   •   u  -  (u  +  <)V   x  7  x  u + icV   x  ^ -f p(f - U) ■ 0 

(22.6) (a +  3 + Y)VV  •   $  - yV  *  V*  $ + <V   *  u -  2<<p + p(t  - jlf)  - 0 
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For  an initial  value  problem,   the   initial   conditions  have   the  form 

(22.7) u(x,0)   - uo(x)       , u(x,0)  -  v0(x) 

in  1/ 

(22.8) $(x,0)   -  $0(x)       , ♦(x.O)  -  vo(x) 

where UQ,   VQ,  ^O»   
anc* v0  are  prescribed  in  V at   time   t - 0. 

Many different  types  of boundary   conditions  are suggested  in applica- 

tions.    For example, we  may  prescribe 

(22.9) u(x',t)  = u' 

x1   on S 

(22.10) ♦<?,,t)  - f' 

on  the boundary  surface  S of   the body.     An equally permissible set  of boundary 

conditions  requires  the   prescription of   the  tractions   and  couples,   i.e., 

(22-n) Cttni "  t(n)k 

on 

(22.12) m£lA - m(n)k 

where  t.     and m       are  the stress and  the   couple  stress   tensors  given by   (20.23) 

and   (20.24)   and   t,   ..   and m,   .,   are  the  prescribed tractions  and  couples  on (n)k (n)k 

S whose exterior  normal   is n. 

In  some other problems,  a mixture   of the   above  two  types of   conditions 

occurs, e.g.,  on  some part    S    of S one may have   (22.9)   and   (22.10)   and un  the 

remainder S,  5 S - S. the  conditions  (22.11)  and   (22.12).     Still  other  types 

of mixed conditions involving some   components of  one  set  and the  remaining 

components  of  the  other  set  are possible.     All  admissible sets  of  boundary  con- 

ditions allowing  unique   solutions  must satisfy   (Eringen   fl966a]) 
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(22-13) Wk+ «(IOÄ -0    onS   '      t-0 

where u,  4.   t,  .,   and m,   v   aie,   respectively, the difference of u,  4,  t,   , -     ''   • (n)* -(n) '        v ' »i»   .(n) 

and m,   ,   from their  respective  values on S. 
~(n) v 

The  field equations  (22.1)  and  (22.2)  are  valid  only  for micropolar 

Isotropie solids.     Note   that  for vanishing <,   a,   ß, i,   and j,   equation  (22.2) 

reduces  to 0 - 0,   and  (22.1)   gives   the  celebrated equations  of Navler of 

classical elasticity. 

For  the anlsotroplc micropolar elastic solid,  the  field equations 

replacing  (22.1)   and  (22.2)  are obtained by substituting  (20.14)   and  (20.15) 

Into  (17.17)  and  (17.18) 

(22.14) A„1.__(u_  _„ + e__^r ^ + D(fk - tt^ • 0 Hkmn    n,in£        nmr 

(22.15) B. .     <)       „    + e.      A (u        + e       (|) )  + p(£,   - J.JL)  ■  0 kUmn m.nJ, kmn mnpq    q,p        qpr r k      J ilk «, 

For  the expressions of   e..   and o,   we used  (20.1)   and  (15.18). 

Finally, we  record below the  expanded  forms of  the  field equations 

(22.1)   and  (22.2)   In  rectangular coordinates. 

2     2     2 
3u    3u   3u 3 u   3 u   ä u 

(x + u) i£ (-^+ 1^ ^ + (^ >(—!+ —r+ —f) 
3x    3y    3z 

2 
3*30 3 u 

^(-37-1^+p(fx---f)=0 at 

2     2     2 
s  3u    3u    -u 3 u   3 u   3 u 

^+ ^ ^7 (-^ + ^+ ^ + (u + ^(-i + —^ + ^ '        ' 3x    3y    3z 

2 
(22.16) 1% 34) 3*u 

+ ^(-T1 - -A + P(f 1) ■ 0 3z   3x      y     2 
o t 

2     2     2 
3u    3u   3u 3 u   3 u   3 u 

' 3x    3y    3z 

2 
3<))    3(J> 3 u 

d t 
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2 2 2 
j| 3(t 941 3$ 341 ^^ 

7 3x 3y dz ' 

32^ 

- 2K*   + pil    - j  1)  - 0 
at 

du HI 

3zy 

(22.17) 

2 2 2 
di|) 3i|> 34) 3  $ 3  $ 3  ^ 

(a + ß) ~ (-5s + "i1 + -Ä+YC—I ♦ —I" ♦ —h ♦ ^(-r5 
3x       3x 3y 3z ^  2 „2 ^2 3z 

' 3x 3y 3z 

324) 

-  2<*    +  pU    - j —fe   -  0 
y      y      st2 

3u 3u 

3x 

2 2 2 3i(i 3^ 3$ 3  41 3  (|) 3  ()) 

dx 3y 3z 

320) 
-   2K*    +  p(£     -  j  h   '  0 

Z 2 »t^ 

3u 3u 

3y 
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23.     INDETERMINATE COUPLE   STRESS  THEORY 

In Art.   22 we  indicated that  classical  elasticity  is  a special  case 

of  the micropolar  theory when <»a"B   m y m  i  m 0  and i  ■ 0.     The same 

is  also  true  for motions  in which  the microrotation vanishes.     There exist 

other classes  of   constrained motions which have  attracted the attention  of 

research workers.    The  most  popular among  them  is  the  indetermine  couple 

stress  theory which is   contained  in  the  work of  the  Cosserats   [1909].  Recently, 

Truesdell  and Toupin   [1960],   Grioli   [1960], Aero and Kuvshinskii   [1960],  Mindlin 

and Tiersten   [1962],  Toupin   [1962],  and   Eringen   [1962]  independently presented 

new derivations   and supplied various missing parts «^f  the  theory.     This   theory 

can be obtained  as a special  case  of  the  micropolar  theory  if  the   constraints 

k k       2    kirn m,l 

are  imposed.     In   this   case,   the stress   constitutive equations   (20.23)   reduce 

to 

(23-2) ^ki) "  AerA£ + (2y + ^k^ 

where a parenthesis enclosing indices  as   usual  indicates  the symmetric  part 

of  the stress   tensor.     We also use  a bracket  to denote  the  antisymmetric part 

of  tensors,  e.g., 

a(k£)    S 2  (ak£ +  aik)     '       a[k)l]   E T  (aU "  alk) 

Thus, when  (23.1)   is valid,   the antisymmetric part of  the stress   disappears 

firom the  constitutive  equations.     We  can,  however,   remedy  this  situation by 

anothei  artifice.     The  equations  of moment of momentum  (17.18)   can be  used 

to solve  for  the  antisymmetric part of   the stress  tensor.     Multiplying   (17.18) 
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by e,      , we solve for 1     krs 

<23-3) '[k*] " 4erk*-nr,« * i pcrkt(lr " V 

where we  used  the  idennity 

(23.4) c , 0e -  <5,   60     - «5,    <50 rk£  rmn km Hn kn  Um 

Upon  carrying   (23.1)   Into   (20.24)  we have 

mk£ - 2  ekrsUs,r£ + 2  e£rsUs,rk (23.5) ^„--le,     u       „+^en     u 

Carrying  (23.5)   and  the expression of 

(23.6) ». " j#. " t J«       ü 
r      J   r       2 J   rmn n,m 

into  (23.3), we have 

(23-7) 'CMl  •i^CMJ   -I0(Erk££r + JÜ[k.£]) 

2 
where  V     is  the  laplacian operator in  rectangular  coordinates 

(23-8) V\   E U£.kk 

If we  not substitute   (23.2)   and   (23.7)   into 

(23-9) \l '  '(ki) +  '(kl] 

we get   the total stress  tensor 

(23-i0) ^ -  Xur.r5k£ +   ^+7)(\.£ + U£.k) 

+ 2 v2u[k.i] " ^ p(erktlr * ^(M^ 
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The presence of the body couple I  and the acceleration U. in this equation 

is certainly disturbing since the constitutive equations, in general, should 

not contain such terms.  When (23.9) is carried into the equation of balance 

of momentum (17.17), we find 

(23.11)    U+U+f+fv^u^+^+f-^V2^ 

£k 

By  use of   identities   (22.4),  we may also obtain  the  vector  form of 

these equations: 

(23.12) (X + 2u + <)VV  •  u -  (y + j - J V2)V  x y  x y 

+  p(f + -j V   x   £)   -  p(]. + ^ v   x  Vx)U -  0 

where for  the lapalcian operator we have used 

(23.13) V2^ - VV   •  A - V  x  v  x A 

Equation (23.12) takes the form (3.27) obtained by Mindlin and Tiersten [1962] 

in an entirely different way if we write y for y + K/2 and n for y/U  and j ■ 0, 

Thus, these author^ as with others, have neglected the micropolar rotatory 

inertia.  Equations (23.11) or (23.12) are the field equations of the theory 

known as the (indeterminate) couple stress theory.  It is to be observed that 

in this theory the skew-symmetric part of stress and consequently the stress 

are dependent on the applied loads and inertia, and they are not determined 

solely as a result of the constitutive character of the medium.  This violates 

the axiom objectivity since the applied loads and inertia terms involved are 

not objective quantities. A second relevant point is that while according to 
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(23.5) one can determine both the symmetric and the skew-symmetric parts 

of the couple stress, this in fact is not the case of the couple stress 

theory in which constitutive equations are derived from a free energy 

function, as is done in Art. 20.  It is clear from (20.9)-, for example, 

that all components of ^ , can no longer be used as independent variables. 

In fact, if one uses (23.1) in the argument of free energy f,   one finds 

that all nine components of m,  are not independent.  Moreover, the skew- 

syirantric parts of the stress and couple stress remain indeterminate . 

This is the reason for the use of the terminology "indeterminate". 

This situation has certain similarity to the isochoric motions of 

compressible bodies as compared to the motions of incompressible solids. 

As is well-known, in the latter case the pressure is not determined through 

the constitutive equations.  Finally, in the indeterminate couple stress 

theory, the number of boundary conditions on the surface tractions and 

couples must be reduced from six to five.  A consistent set of boundary 

conditions must not violate the uniqueness theorem.  Mindlin and Tiersten 

[1962] have obtained a uniqueness theorem for the following set of boundary 

conditions. 

Let (x., x„, x_) be a set of orthogonal curvilinear coordinates 

taken in such a way that x- ■ x_ locally coincides with the surface S of 

the body.  The boundary conditions consist of specifying at x_ ■ x. one 

factor in each of the five products 

(23.14)        p^ , p2ü2. E(33)G3 , m31r1 , S^ 

In this regard, see the discussion given in Eringen [1962, Art. 40].  See 
also Mindlin and Tiersten [1962], Toupin [1962], and Eringen [1964b]. 
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where 

(23.15) 

p1 i t(31) --  (mi2;1 - m33.2) 

P2 : '(32) + 2 (mil;i ' n,33;l) 

Here an index pJaced after a semicolon denotes directional differentiation 

along the corresponding curvilinear coordinate, and a superposed bar the 

boundary values of the quantities involved.  Curvilinear components of the 

displacement vector on S are denoted by u, , the couple stress by m, , and 

the stress tensor by t, . 

If an edge is an intersection of two orthogonal surfaces x - xx 

and x ■ x , then we must also specify 

(23.16) [m,.]   - [m  ]   or u 
33 vO    11 vO     2 

X3       Xl 

The   reduction of  the  number  of boundary  conditions  from six  to  the  above 

five,   (23.15),   is similar  to  the  one encountered  in  the Bernoulli-Euler 

theory of   thin plates.     Conditions   (23.16)   are  the  analogs   to  the  corner 

conditions . 

Under suitable  regularity  assumptions,   the  above  five boundary   condi- 

tions,  together with   the  assignment of  the body  force  field  pf,   curl   (pH), 

and   the  initial  values of  u and u  (with j   ^  0),   are sufficient  for  the  unique 

determination of t.,t   r,      ,   t,. sv   and m,.    , .     The  displacement  field  u and 

the   rotation r are unique   too within  an arbitrary  rigid body displacement 

field. 

The  indeterminate  couple stress   theory described above has many 

apparent  limitations.     Whether or not  bodies   can  undergo such  constrained 
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motlons is not known.  The appearance of nonobjective quantities in the 

constitutive equations, the limitations on the spin inertia and the body 

couple field, and physically unnatural boundary conditions leaves much 

to be desired.  Experimental comparison for certain practical applications 

exists (cf. Schijve [1966]). A discussion of the weakness of this theory 

indicating the disagreement of the theoretical results with the experiments 

has been given by Kaloni and Ariman [1967].  Nevertheless, recent litera- 

ture contains a large number of solutions in the field. 
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1U.     PROPAGATION OF WAVES   IK  AN  INFINITE 

MICROPOLAR  ELASTIC SOLID1 

Here  and  in  the  following several  articles we   investigate solutions 

of  certain  dynamic and static problems   in  linear  Isotropie micropolar elas- 

ticity.     Essential  to these  problems   are  the  field equations   (22.5)   and 

(22.6)   and boundary  conditions of   the   type  listed in  (22.11)   to   (22.12). 

The  propagation of  linear  Isotropie micropolar elastic waves with 

vanishing body  loads  is  governed by   (22.5)   and  (22.6)  or 

(24.1) (cj +  c^)W  •  u -  (C2 + 0^)7   x  V   * u + c^V  «   $ - Ü 

(24.2) (cf +  c,)W   •   A -  c.V  *  V   *   A +  u^V  * u -  2UK<1> =   * 4 5 4~.t 0 o1 

i nere 

(24.3) 

2 
Cl 

\+2u 
P       ' 

2 
C2 P     ' 

2 
c3 P 

2 
2 = JL 

'   Pj 
2 

C5 
a+ß 

PJ* 

2 c3 

j 
< 

Pj 

We decompose   the vectors  u and  % into  scalar and vector potentials  as 

follows: 

u-Vu+7xu     |     V'U-0 

(24.4) 

^»V^+Vx*    t    v.$-o 

Substituting  these  into   (24.1)   and   (24.2), we see  that  these  equations  are 

satisfied   if 

The  present  section  is  based on   the work of Parfitt  and  Eringen   [1966] 
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(24.5) (cj ♦ c^)V2u -  U 

2 2     2 2 
(24.6) (cT +  cJV  4, - 2ur •4 5' O1 

(24.7) {c2
2 + c2

3)V2U + c^V   x  * - Ü 

(24.8) cfv2* -  2a)2* + w V  x U -  * 

It  may be observed that   (24.5)   and  (24.6)   are uncoupled  for  the  scalar 

potentials  u and  (J, while  equations   (24.7)   and   (24.8)   for  the vector 

potentials  are  coupled. 

Plane waves  advancing in  the positive direction of  the unit  vector 

n  may be expressed as 

(24.9) (u,   $,   U,   •}  -   {a,  b,  A,  B}     exp   [ik   (n   •   r  - vt)] 

where   (a,b)   are  complex  constants,   (A,  B)   are complex  constant  vectors,  k 

is  the wave number,  and  r is  the position vector.     Thus 

(24.10) It s if     ,        r - «^ 

in which  t is   the wave  length  and i    are  the unit  rectangular base vectors, 

Substituting  (24.9)   into   (24,5)   gives 

(24.11) v2  =  c2  +  c2  -  (X + 2u + O/p 

which  shows  that  a plane wave with  the displacement vector 

(24.12) u    =  ik  an exp   [ik  (n   •   r - v  t)] 

may  exist  in  the  direction  of  propation n,  Fig.   24.1.     These waves  are  the 

counterpart of  the  classical  irrotational waves  and  reduce  to  them when <  ■ 0, 
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We designate these waves, longitudinal displacement waves. 

A second scalar plane wave is the solution of (24.6) in the form 

(24.9).  The wave speed in this case is 

2   2    2    2-2 
(24.13) v^ - cT + c^ + 2(A 

2    4    5    0 

If we   introduce  the  angular  frequency u 

(24.14) u    -  27Tf     -  Ztv./i - kv 

the wave  speed may be expressed  as 

2   2   '1 

(24.15) v2       (c2 + c2)(1.     V       .       ^Y 

245 ^ pJ(i--^7) 
Pju2 

ITie  speed of  these waves  depends  on  the  frequency.     Hence  they  are disper- 

sive.     Since 

(24.16) o +  ß +  Y 1 0 

we  see   that  such waves  can exist whenever 

(24.17) Cü2   >   S2mQ 

These waves will be  called  longitudinal microrotation waves.   Fig.   24.1, 

The  microrotation vector  is  given by 

(24.18) J • ?♦ -  ik2bn exp   [Ik-Cn  '   r - v2t)] 

For  the   case of  u.  ■  >^2w^    ^ w   ,  we have v_ ■ ^ and  the wave  does  not exist 
2 0 c 2 

When w„  <   ^2^^,  v„  becomes  purely  imaginary,   i.e.. 
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(24.19) v2  -   *i|v2!     ,       i  .   /T 

It may be seen  that  a standing wave of  the  form 

W2 (24.20) ()i - b  exp   (-   i     i  n   •   r)  exp   (-iw  t) 

is  possible. 

For such waves,   propagation  is  possible  if  w„   >   '•tt.'  Hence, 

i/2w„   = w    is  a cut-off  frequency  for  these waves. 
0   c n   ' 

The vector wave solutions are obtained by substituting (24.9) into 

(24.7) and (24.8). This results in two simultaneous vector equations for 

the unknowns A and B. 

(24.21) 

a.A + iaDn * B = 0 
A-    B 

ißAn * A + ß B » 0 
A~       B~ 

which for nonvanishing aA , a,,^., and ß„ are subject to ABA B J 

(24.22) n'A-0       ,       n-B=0 

resulting  from  (24.4)     and   (24.4)   .     Here 

(24.23) 

-,2,2        2        2. -  .    2 aA = k  (v    - c2 - c3)     ,       aB  -. kc3 

2 2     2 2 2-2 
ßA  E  kW0     •     ßB  £  k   (v    "  c;  -  2w0k    > 

Equations   (24,22)  show  that  the vectors A and  B  lie  in a common  plane whose 

unit normal is n.     Solving from (24.21)     for B we  have 

(24.24) B -  -i ~ n x A 
6B   " 



-117- 

Hence,   the  three vectors  n,  A,  and B are mutually  perpendicular.     Moreover, 

vanishing A implies  vanishing B.     These  two  types  of waves  are,   therefore, 

coupled  and cannot exist without each other.     From  (24.4).   and   (24.4). we 

see  that u and  $ corresponding to U and  $ are normal   to each other and  to 

the  direction of  propagation n.    Hence  these waves   are  transverse waves. 

We   call  the waves  that  are  associated with U. transverse  displacement waves. 

and  those  that  are associated with  $,   transverse microrotation waves.   Fig. 

24.2.     The  transverse  displacement waves have  their  classical  analogues  in 

equivoluminal waves  and in_the  limit  they  reduce  to  these waves. 

The velocities  of  propagation of  these waves   are determined by 

carrying  (24.24)  into   (24.21)     and using  (24.22)   .     This  gives 

(24.25) av4 + bv2 + c = 0 

where 

i       o  2 "2 a   =   1 -  2Iü ü) 
0 

(24.26) b   5   -[c2 + Cjd -  2u>2y2)  +  c^l - a^aT2) ] 

2/   2 J      2, 
c   =   c4(c2 +  c3) 

The  positive  real  roots  of   (24.25)  are 

i       n— 1/2 
v.  «   fe*- (-b +  /b  -4ac  )] 

3         2a 

(24.27) i    ... 
1 /2     1/2 

V4  '   l2l  ("b "  ^  -4ac^ 

By  studying  the discriminant 
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unde 

jfi-, ;r 2   2   2 J _ 2   1  2, 2 -l} rb -4ac ■ {[c. - c. - c + 2(c + — C.)u u ] 

1/2 .222 -2,1/^ 
+ *c3c4«0« } 

r the conditions «r ^_0, Y 2. 0 compatible with (21.1), we find that v_ 

is real when w > w and v, is real for all values of w.  The frequency 
c     a 

u ^ "^Wn ^8 a8ain a cut-off frequency for waves propagating with velocity 

3* 

c 

V 

In summary, we found that in an infinite micropolar elastic solid 

six different types of plane waves propagating with four distinct speeds 

of propagation  can exist.     These  are: 

(a) A  longitudinal displacement wave  propagating with speed  v   . 

(b) A  longitudinal microrotation wave with speed v    propagating 

in  the   longitudinal  direction whenever  the   frequency of   these waves  is 

above  the  cut-off   frequency  u  .     These   two  types  of waves  are  uncoupled. 

(c) Two  sets  of  coupled  transverse  displacement waves  and   transverse 

microtation waves   at speeds  v    and v   .     Of   these,   the waves having velocity 

v    can exist when  u  »  w    otherwise  they  degenerate  into  distance  decaying sinu- 

soidal vibrations. 

A detailed  analyses of  the wave speeds  v?,  v  ,  and v    is  sketched  in 

Figs.   (24.3)   and   (24.4). 

By use of   (21.1),  Parfitt  and Eringen   [1966]  have shown   that  a  con- 

sistent solution  for v.  and v.   requires   the  existence  of 3 4       ^ 

2 2 J     2 
4-2 3 

or the  additional  inequality 

(24.28) \ L * + * 
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In addition, the wave speeds as a function of . must satisfy 

(24.29) v.2(0) < v2(a) ) < vj(») 
A   — 4  c — 4 

(24.30) v^-) > VjC-) > vj(») 

Also  they  found  that 

(24.31) v^   > vj 

The study of the relative magnitudes of v , v , and v, requires 
sum of the 

knowledge of  the  relative  magnitude  of  the/fconstitutive  coefficients 

ci +  d with  respect   to jic.     Thus 

2 2 2 1 
v0   >  v.    >  v. for UJ<U) ,       a+ß> — jk 

2 J 4 c 2  J 

2 2 2 * 1 
(24.32) v.  >  v0   >  v. for u    <ü)<ü)     ,       a+ß^—jk 

3—2—4 c— 2J 

2 2 2 c * 
v„  >  v_   >  v. for on    <  w 

2 —    3—4 

* 2  *    2  * * 
where w is a solution of v (w ) ■ V.(üJ ) in the range u < u <  <x.     For 

other details tne reader is referred to Parfitt and Eringen [1966]. 
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25,  REFLECTIÜiN OF A LONGITUDINAL DISPLACEMENT WAVE 

In this section we study the reflection of a plane longitudinal 

displacement wave at a stress-free plane surface of a micropolar half 

space.  If x ■ 0 is the plane of the incident displacement vector, then 

the reflected waves from the boundary surface z * 0  can be shown to 

remain in this plane so that the problem is a two-dimensional one. On 

the boundary plane z = 0 being free from traction we must have 

t, , - m, , "0.  Since we also have u « *„ - 4>„ ■ 0 through (22.11) and 
~(n)  ~(n) 2   3 

(22.12) for the tractions on z = 0, we will have t,   .     = t  , t, , = t 
(z)z   zz(z)y   zy 

and m, x  = m  , or usina the constitutive equations and (2A.4) we have 
(z)x   zx       0 

t   = A(u   + u  ) + (2u + <)(u   - U   ) = 0 zz     »yy    »zz »zz   x,yz 

(25.1)   t  = u(u   - U   ) + (u + <)(u   + U   ) + <(*   - $  ) = 0 zy      ,yz   x.yy ,yz   x,zz      z,y   y,z 

m  ■ y(4    - ♦   ) = 0 
zx    z»yz  y»zz 

The  nonvanishing components  of  the  solution vectors   (24.9)   appropriate  to 

this  problem are  given by 

u    ■  a    exp  [i(k.n     •   r - u),t)] 
a        a la 1 

(25.2) Uß -  lAßx exp   [i(kgng   •   r - ^t)] 

%'   (V  + Bdzk)   eXp   [Uhnc   '   ?" "g^1 

where u.  - k v   (a »  l,2;ß  ■  3,4)   and   the  repeated  indices  are  not  summed. 

The  coefficients A and B are  related  to each other by 

iu)0A3x 
(25.3) B^ s S-iS- r (n. j  - n_ k) 

3 ,    /  2       o  2, -2 2,      3z^ 3y k3(v3 - 2«Jc3    - cp 



-121- 

wlth  a similar equation  for B,. 

The potentials  listed  in  (25.2)   satisfy  the boundary  conditions   (25.1) 

at  z - 0  if 

13        4 

(25.4) k.n.     - k.n.     - k.n.     ■  k.n. 
1  ly 1  2y 3   3y 4  4y 

and 

k.n.     - k.n„    - k„n„     - k.n. 
1  Ix        1  2x 3  3x 4  4x 

(25.5) [XkJ ♦   (2|i + <)kjn^   la.  +   [ XkJ +  (2u +  <)kjnj   ]a9 1 ilzl 1 12z2 

2 2 
-   (2u + <)k n_ n^ A_    -   (2y +  <)k n.   n    A      ■ 0 

3 3y  3z  3x 4 4y  4z 4x 

Since  the  incident wave  is  in  the  x »  Ü  plane,  n,     "0  and   (25.4)-  yields r      Ix 3 

n  « n. - n.  - 0 
2x   3x   4x 

which is the proof of our statement that all reflected waves are on the 

x = U plane.  Waiting 

n,  = cos 8,  ,  n„ = cos 6,,  ,  n. ? cos e_ ,  n.  S cos e. 
ly       1      2y       2      3y       3      4y       4 

(see Fig. 25.1) and m. ■ k v. from (25.4) we get 

V3 V4 
(25.6)      cos e„ » cos 9, ,  cos 9« ■ — cos 0. ,  cosO . - — cos Ö. 

2       1 '      3  v      1 4  v1     1 

where v are the speeds of the various waves found in Art. 24.  From (25.6) 

it is clear that Ö - ö». 
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Substituting (25.2) into the remaining two equations of (25.1), we 

obtain two other equations.  These two equations and (25.5) are adequate 

to determine the amplitude ratios a^/a,, A- /a. and A. /a..  The amplitude 
2    1      3x    1 4x    1 

B is  determined  from equations   (25.3)  and similar ones   for  B. . 

If we set n      = 0  in   (25.5),  we  find  that  a    =  -a..     This  shows 

that  for normal incidence  the  reflected longitudinal displacement wave 

is  also normal  to  the boundary.     For n1     ^ 0,   the  following  are  the  solu- 

tions   for  the  ratios  of  the wave  amplitudes 

(25.7)     — =   {[A +  (A+2u+<)   tan2   Q,][(\*<)   tan2   6.   -  y -   (u+<)g?  tan  9,   tan  6.   - Q2 

a1 1 4 13 4 2 

„     2     tan   Ö, „ 2 
+  (UQ1+Q3)   tan   g   ]  +   UvHcy  tan  ei  tan   ^(Q*-!)) 

2 2 2 
x{-[X+  (A+2u+<)   tan    0  ][(u+<)   tan    o    -  p -   (U+K)^,   can  H    tan  0, - Q» 

2 tan  6 
+  (WQJ-Hjj)   tan   g   ]  +   (2y+<)/(Q^-l)   tan  Bj   tan  6^}  1 

A 
(25.8)     —-=  -2(2u+<)[A +  (A+2u+<)   tan    G. ]   tan  8, 

a1 1 1 

"{-[A +     (A+2U+K)   tan     ei][(u+<)   tan    6.   -  u  -   (u+<)Q2  tan  6.   tan   6. 1 4 13 4 

- Q2 +  (UQ1+Q3)   tan  /]  +  (2P+K)
2
(Q

2
-1)   tan  ei   tan  e^}"1 

2 2 

(25.9) Qj  £   [v*(l - —|)   -  c;](v2(l - —A-)   -  c2) 

02            !iV4     r   2n       2V 2  -1 

Q2      "    ~~2" (V4(1 2)   " C4, 

U)      V. u 
4y 

2     2 _   2 

o2 ^V3    .  2n      ^        2."1 
Q3      -   -f-f- [v4(l  --7)  - cj 

3y 
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These   results  were studies  in detail by Parfitt  and  Eringen   [1966]   for 

various  special  cases.     A sununary  of   their findings   is  given below: 

A longitudinal  displacement wave  at a plane  stress   free boundary 

in  general  produces  three   reflected waves   (as  compared with  the  two waves 

of  the  classical  theory);   one  longitudinal displacement wave  reflected 

at  an angle which  is  the  same  as  the  angle of  incidence,   and  two sets 

of  coupled  transverse waves,  one   travelling with  speed v_  and  the other 

set with speed v,   (Fig.   25.1).     Their  angles of  reflection  are  calculated 

by   (25.6).     For normal  incidence   (0    =  90°)   the waves  at speeds  v.  and v, 

vanish  and  the  reflected wave  is  a  longitudinal displacement wave normal 

to  the boundary.     The  amplitude  ratios  as  functions  of   the  angle of  inci- 

dence  6.   are  given by   (25.7)   to  (25.9)   and similar equations  for B.. 

The  general solution prevails   as   Ö.   decreases  from 90°   to a critical 

angle  6.  which makes  0.« 0  and A.     =0.     At  this  angle  of   incidence we 
1 3 4x 

have a surface motion  travelling at  speed v    and a reflected longitudinal 

* * 
wave at speed  v    and angle  6„ ■  9..   ■  6. .     As  9.   decreases  from 9     to  zero, 

the angle   9    becomes  complex.     The  interpretation in  this   case  is  that  a 

longitudinal wave  is  reflected into  the  medium at  an  angle   9    and  a coupled 

transverse wave   (decaying with  depth  and  travelling at  a speed  c,   in  the 

range  v    <   c j_ v„,   is  reflected.     For  9     ♦ 0,  a  limit solution  is  possible 

Parfitt  and Eringen have also  studied  the   reflection of  coupled 

transverse  shear  and microrotational waves  and the  reflection of a longi- 

tudinal microrotational wave.     For  these  and other  interesting  results,   the 

reader  is   referred  to the  foregoing  reference. 
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26.     MICROPOLAR SURFACE WAVES1 

In  this  section we  investigate  the  propagation  of  surface waves 

in  a micropolar half space.     In Section  25 we have  shown  that  the   inci- 

dent  and reflected waves  propagate  in  the  same plane.     We select   this 

plane  to be  the  x - 0 plane.     Thus we  take  u.   =  <t>2  =   $- * 0,  im   i- m 0, 

and u2   s v(y,z,t)   u    ^ w(y,z,t)  and #. i#(y(s(t)   as   functions of y,   z, 

and  t  only.     In  this  case   (22.1)  and  (22.2)   reduce   to 

0C 

„2. ,dv       3v,        „  t       n 
YV 41 + <(T— 77) - z** - oi —t " 0 

3y       •■ jt2 

2 
where  V    is  the  two-dimensional laplacian operator,   e.g., 

2 2 

2 2 
'>• 9z 

We  consider waves which  are  propagating  in  the plane  x " 0 with  an  amplitude 

decay  in the  z  direction. 

v = A exp   (-£,z)  exp   [iq(y  -  et) j 

(26.2) w =  B  exp   (-^z)  exp   [iq(y -  ct) ) 

$ -  C exp   (-:z)  exp   [iq(y  -  ct)J 

1  Suhubi  and  Eringen   (1964bJ 
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Substltutlng (26.2)   Into   (26.1)   gives  three equations 

[-(X + 2u +  <)q2  -f   (u +   <)C2  + pq2c2]A -   (X +  uUqCB -  <& - 0 

(26.3)     -   (X +  u)iqCÄ +   [(X + 2w +  <) ;2 -   (u +  <)q2 +  pq2c2]B -  lq<C - 0 

<a + lq<B + [Y(C2  - q2)   - 2< + pjq2c2]C -  0 

A nonvanlshlng solution for A,  B, and C may exist  If the determinant of 

the  coefficients  Is  zero.     This  gives 

2 2 2 „ 
C C      —    C fc 

(26.4) [(I + -i-K2 -(14 -^ )q2]   {[j(H2 - j(e - ^j)q2 - 2e]   « 
C2 C2 2 

C2 

[e + l)c2  -  (e + 1 - ^q2]  + e2(c2 - q2)}  - 0 
C2 

where 

(26.5) e   I  c2/c2     ,       0 = c2/c2 

and c.   to cs are given by   (24.3).    A set of approximate  roots of  (26.4)   Is 

2 
obtained by neglecting  the   terms  containing E   .     Hence 

9 2 

4 ' (1 " TTT* 
Cl + C3 

9 2 
(26.6) Cj « (1 - (1 -  t)  ^jjq^ 

C2 

S-2 F+   a-^2 
C
4 

in order  for  the waves   to be surface waves, we must   consider only  the posi- 

tive values  of  the  roots   4,,  C„,   and  c«.     The displacement and mlcrorotation 

field  can now be expressed  as 
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3 
-    ^ Aj^ exp   (-;kz)  exp   Uq(y -  ct) ] 

k-1 

3 

(26.7) » •    I  W exP  ("^k2^ exp   [iq(y " Ct^ 
k-1 

; -  u.A-  exp  (-;3z)  exp  [iq(y - ct)] 

where 

(26.8) Al q       '   A2       ;2     ' 

2 2 
iq j      ,,, w2e       c      2.       c       2, 

C4 C2 

at z - 0 

On stress-free boundary surface we must have 

t      .xiv + (x + 2 j iw _ 0 

zz 9y 9z 

(26.9) t       - y|2-+ (u + <) ir + «^ - 0 
zy dy dz 

in       • Y  T^ - 0 
ZX ;Z 

Substituting  (26.7)  into  (26.9), we obtain a set of  three homogeneous equa- 

tions for A1, A_,  and A_.    The determinant    of   the coefficients must vanish, 

Hence 

(26.10)       '.D
3
 -  8w2 + 8(3 - k)aj -  16(1 -  k)   - 16e(l -  kw)  - 0 

(26.11)       £;3U3 - 0 

where 

(26.12) M  I  C2/C2     ,       k  I  c^/cj 

For  c  ■ 0,   (26.10)  reduces  to the  classical expression of  the  Rayleigh surface 

waves.     Denoting  the values  of N  for this   case,  with  w    to a first-order 
K 
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tpyi jüimbtion  in r.,we  obtain 

16(l-kco ) 
(2C   U) u) - u)D + 

R      3^ -  16ui    +  8(3-2k) 
R R 

For  k  ^   l/J, which  correspond to Poissons  ratio 1/A,  and for the incom- 

pressihle solids  (k - 0) we have,   respectively, 

(26.1A) 

c - 0.919   (1 + 0.932e)c2   ,   (k -  1/3) 

c - 0.955  (1 + 0.783e)c2   ,   (k - 0) 

Tie   tc-is   Lcntaining  c  are  the  first-order  corrections   to  the  Rayleigh 

wave velocity  in each  case. 

Equation  (26.11)  gives   the speed of  propagation of  a new  type 

surl.i  t wave not encountered  in classical elasticity.     This  is  given by 

Ui.lS) — -   [2e/j(l + I  - Q)]1/2q,~1  ■   (2e/j)
1/V1 

2 

This  v.ev wave speed  depends  on  /e  and  it  is  dispersive. 
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27.     STRESS  CONCFNTRATION  AROUND A CIRCULAR HOLE 

For  the determination of the stresses  In a plate with  a circular 

hole, we need to express the basic equations of micropolar  elasticity 

in plane polar coordinates   (r,   6),   Fig.   27.1.     For the equations of 

balance of  momenta,  parallel  to classical  elasticity, we have 

3trr      1     3ter + irr_Llee+    f *\ 

rf1   n 
ätre+  1     ^96,   tjJ^JM   ,     f     .       \ i27A)   ^r+ 7 TT + —;—  pfe   p ~7 

at 

dm ,       jm m -it 
rz       1 Qz        rz z 

3r r       30 r re Or       K z      ^J     .^2 
dt 

For  the nonzero  components  of  the strain  tensor   e.     given by   (4.17)   through 

the  methods  presented  in Eringen   [1962, Appendix] we  obtain 

3u 
 r 

Srr "     3r 

ee9"7 (—+ V 

(27.2) 

re        3r      vz 

1     3u 

eer ■ 7 (^? - ue) + *z 

The  constitutive equations  for the  stress   read 

(27.3) 

t      -   (X + 2u + <)e      +  X£„n rr rr 69 

tee -  Aerr H-  (A +  2u + 0«M 

^9 "  ('u + 0er9 +  ^t. 

^r " ^re + (M + <Uer 
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.rn these equations (t  , t „,...), (e , e „,...) and u and u., are, n        rr  rO*   '  rr  r6 r     8 

respectively, the physical components of the stresses, strains, and 

displacements. 

The equations of compatibility (8.9) In plane polar coordinates 

take the form 

6r   Or   r9  1,   rr    z _ _ 
3r   '   r     7  80 "  3r " 

(27.4) 
3eee , e99 " £rr  1 3er9  1 Hz      , 
3r      r    ' r  39 " r  39 " 

3mr,_  m„   ,  3m 
92   9z  1,   rz  . 

3r    r  ' r  39 

For static problems and vanishing body loads upon Introducing the 

stress  functions  F(r,   9)   and G(r,  9)  by 

i    fr .   \ »rf      1     32G       1    3G 
rr "  r     3r        2   ..2  "  r  3r39 2   39 r    39 r 

32F       1     32G      _LiG 
99 "   ^ 2       r  3r39 "     2   39 

3r r 

(27.5) 1     32F        1    3F       1ZQ       1    32G 
r9 " " 7 3r39 2   39 "  r   3r "    2   .Q2 r r     39 

i   a2? + _Li£ + ii. 
9r  " " r   3r39        2  39       .2 

r 3r 

3G 1  3G 
rz       3r   '       9z      r  39 

we see  that equations   (27.1)   are satisfied  identically.    From  (27.3), we 

solve  for  the strains  in  terms  of  the stresses  and then substitute   (27.5) 
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for  the stress  components,     ii we now use  the expressions  (27.4), we get 

(27.6) 

^(G-cVG)--2(l-v)b2±^(V2F) 

^(G-c2V2G).2(l-v)b2^(V2F) 

where 

c2 , T(M t itf. ba 

(27.7) 

K(2\i + K) »      •    • 2(2u + K) 

v   I  1  v2   = _£ + 1 J. +  1_ _£ 
V      2A + 2u +  <     ' 3r

2      r  är      r
2   ae2 

Solutions  of  the  following equations  are also solutions  of  (2 7.6) 

(27.8) V2F - 0     ,       V2(G -  CVG)   - 0 

For  the problem of a circular hole  In a plate  (or cylindrical  cavity In an 

Infinite solid)  subject  to a  field of simple  tension at  Infinity,   an appro- 

priate solution of  (27.8)   is 

F - 7 r2(l -  cos  29)  + A.   log r +  (-7 + Aj   cos  26 
4 12 3 r 

(27.9) 
A4 G -   [—+ A5K2(r/c)]   cos  29 
r 

where K„ is the modified Bessel function of the second kind and second order, 

This set satisfies (27.6) if 

(27.10) A. - 8(1 - v)c2A.5 A 3 

The remaining four constants A , A?, A , and A are to be determined from the 

boundary conditions 
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t      ■tQ"m      "0    for r ■ a rr        r9        rz 

(27.11) for r - " 

t      - 7 (1 + cos  2 6) 
rr      2 

t      - - ^7 sin 26 
r6 2 

m      - 0 
rz 

Here T  is   the  constant   tension  field at  a plane  x ■  const  at  infinity,   Fig. 

27.1.     By  use of   (27.5)   and  (27.9), we  calculate  the  conponents of  the  stress 

and couple  stress   censors 

_ A 6A 4A 6A 
t      - f (1 + cos  26)  + -i -   (—| + —I J-)   cos  26 

r r r r 

2A 2 
*■    « ^? K0(r/c)  +  (1 + ^K^r/c)]   cos  26 

r 

_ A 6A„       6A, 
teo - | (l -  cos  26)   - -i +  (-^ - -J)   cos  26 

r r r 

2A 2 
- -£ [^ K0(r/c)  +  (1 + ^^(r/c)]   cos  26 

r 

6A        2A 6A 
(27.12)   t^ - _(I + -2 + _| - ^)   8in  26 

r r r 

+ — [— Ko(r/c)  +  (1 + ^-)K1 (r/c) ]  sin 26 cr     r *      1 
r 

6A 2A 6A 
Kir--t*-t*"T--r 9in20 

r r r 

A .  2 3 
♦ -j [d +^2)Ko(r/c)  +  (tt^i2|^L(r/e)]   sin 26 

c r r 

mrz y sin  29 - -*(«» Ko(r/c)  +  (1 + ^^(r/c) ]  sin 26 
r r 

2A4      2A5 2c 
möz -  <—J + 'T2' (Ko(r/c) + ^^(r/c)]}  cos 26 

r 
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Uslng the boundary conditions (27.11), we find that 

T 2      A   
Ta4(1 - V 

A, • - T a   ,   A„ 

(27.13) A, - 0,,   ^ v , A 

1 2 -   ,   "2   A(1 + F x 

2 2 2 
Ta 4(1 - v)a b T 

3  2(1 + F)     4     1 + f1 

TacF. 
Ac - - (1 + F^K^a/c) 

where 

b2 r,  a2  2aK0(a/c)' (27.14) Fi,8(1_v)^[4 + ^ + ^-^ 
c      c       1 

Substituting (27.13) into (27.12), we obtain the stress and couple stress 

fields. The value of tQQ at the perifery of the circular hole is of great 99 

interest.     For this we obtain 

(27.X5) ^.„X^IJMIJI, 

The maximum value of this t„„   occurs at 9 ■ iv/2. 
d9max 

t*a 3 + Fi ,ni  K-N 00 max . _    1 (27.16) ^^»sg^.p^ 

The quantity S so defined is the stress concentration factor.  From (27.14) 

It is clear that S  depends on v, a, b, and c. 

The above result, (27.16), was given by Kaloni and Ariman [1967] who 

adopted the solution of the same problem for the indeterminate couple stress 

2 2 theory given by Mindlln and Tiersten [1962].  If we set b /c «1, we obtain 

for F the one given by Mindlin [1963], namely. 
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2     Ko(a/£) •* 
(27.17)        f|.ba.v)C4 4^^^I_jrl 

it X 

2 2 
where £ is a physical length for a given material. The case of b /c - 1 

gives K  ■ -2\i which is not acceptable on grounds of uniqueness and physical 

reasonableness since K cannot be as great as twice the shear modulus.  Other 

discussion of these results and comparison of the stress concentration factors 

of the indeterminate couple stress theory and micropolar theory are to be 

found in Kaloni and Ariman [1967].  Below we reproduce several of their curves 
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28.     GALERKIN AND PAPKOVITCH  REPRESENTATIONS 

A useful mathematical  representation  for the displacement and micro- 

rotation fields   can be  constructed  as  follows:     Let 

Xi   
E -^  .   T   H -^  ,   Q   = xj + X2 +  X^   ,   Q1   ^   (A + 2u -t-   <)Q  -   pT2 

(28.1) 

Q2   Mu +  <)Q -   PT2, Q3 MoH-&fY)Q-PjT2-2<,  Q^  Y Q -   PJT2 -  2< 

and let  the matrix L«     C^-iJ     .   (i.J  " 1,2,...,6)  be  given by 

(28.2) 

Q2 +  (A+M)XJ       (X+M )X1X2 (kflOLI. 0 -<X. 

(A+w)X1X2 Q2 +   (X+u)X2       (X-(-u)X2X3 

(A+^X^ (A+u)X2X3 Q2 +   (A+u)X3 

<X. 

-<X, 

KX, 

-KX, 

1 
<x. 

-<X3 <X2 QA +   (ori-ß)X1        (Qtfß)X1X2 (a+ß)X1X3 

KX, 

-ICX, 

-KX, 

KX, 

(a+ß)X1X2 

(a+ß)X1X3 

QA + (cH-ß)X2  (a+ß)X2X3 

(Qri-ß)X2X3  Q4+(a+ß)X3 

The equations (22.1) and (22.2) can be expressed in the matrix form 

Sandru [1966] 
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(28.3) 

ul 

U2 

fl   ' 

f2 

U3 
- -P 

f3 

*1 s 
*2 l2 

*3   . L3   , 

For the  inverse L      of  the matrix L.    we have,  formally, 

(28.4) -1 Jl 
'lj    Q1Q3(Q2Q4 + rQ 

where 

Nii " Q3{Q1QA '   [(X+ll)Q4 "  <2lXi}     »   (i " i*2'3) 

Nii " Q1{Q2Q3 "   [(a+ß)Q2 '  <2]Xi-3}'   (i " 4'5'6) 

Nij " Nji " QS^-^+^QA + <  i\^i    » » ^ Ji  U»J " MtD 

(28.5) 

Nlj  " Nji B Q1l-(cri-ß>Q2 +  <   1Xi-3Xj-3'  i ^ ^   (i j  " A'5'6) 

N14 25 36      W41       ^52       W63 

N15  " -N51 " N42 " -N24 -  *W3 

N16 -  -N61 " N43 " -N34 -  -*W2 

N26  "  -N62 " N53 " -N35  "   ^l^h 

Consider  now 
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(28.6) 

u. 
'   Fl    " 

U- F2 

ft. 
" N 

F3 
* 

Fi 

|L Fa 

*3 .   F3   . 

If * - Q F and 4» - Q-F  through (28.5) and (28.6), we find that 

(28.7) 

u(x,t) -  Q^ □4t1 - [(x + u)D4 - <2]YY • f| -< D3Y " *2 

$(x,t)  -   D9 □,*„  -   [(a +  |) U     -  <2]VV   •   f.  -KD   V  x  I 
2       3-2 1-       '1 

where 

D     5   (X + 2u +  <)V2  -  P -^2 .   O 
3t 

(p + <)VZ  -  p -~ 
at' 

(28.8) 

D9   H   (a +  ß  +  Y)V2  -  pj    -^ -  2K,    D, 
3t ' 

YV2  -  pj     —,   -2< 

From (28.3),   (28.4),  and  (28.7),  it follows  that ♦.   and *. satisfy the  follow- 

ing uncoupled equations 

(28.9) 

□1<D2D44«V)t1 - -pf 

D3(D2DA + <2v2)*2 - -pi 

If we  take < - 0 in  (28.9)^ we obtain a representation known  in  the  classical 

theory of elasticity. 

In the static case, we set T - 0 in  (28.7)   and  (28.8)   and obtain  the 

Galerkin representation  for  the micropolar elasticity, namely. 



u(x)  -   (X + 2M + <)V
2
(YV

2
  -  2K)*    -   [Y(A ♦  ii)V2  -  <{2\ + 2w +  <)] 

7V   • *   -  <((a +  ß + Y)^2  "  2icl7  x  *2 

(28.10) 

$(x)  -  (u + ic)V2[(a +  ß + Y)V
2
 -  2<]*2 -   [(u +  <)(a + ß)V2 -  K

2
]VV   •   *2 

-  <(X + 2y +  K)V
2
(7  x  *1) 

where   :.   and  !,, satisfy  the equations 

4 2 
(X + 2u + <)V   [(y +  IC)YV    - <(2u + <)]*,   - -pf 

(28.11) 

[(o +  ß + Y)V
2
  -  2<][(u + <)YV4 -  <{2u +  K)]*2  - -pi 

For  K - 0.     (28.10)1   gives Galerkln's representation of  classical elasticity. 

We  decompose  the body  force and body  couple  Into  Irrotatlonal and 

solenoldal parts  as  follows: 

pf - vrio + v x n 

(28.12) 
* * 

pi - Yn0 + v x n 

and note  that 

( D2 □4 +  <2V2)*1 - VA0   ,      D^  -  7   x  A 

(28.13) 

(D2 □4 + <2v2)*2 - VAJ ,     D3*2 - Y x A* 

From   (28.7)  and  (28.9)   It now  follows  that 

(28.14) D1Ao  -  -Ho   ,      n3A 
* * 
o - -no 

and we  obtain 
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u -  VA0 + 7  x   ( D,A)   -   <V   x   (v   x  A  ) 

(28.15) 

2 
| .  -KV  x   (V  x  A)  + V   x   (O^A  ) 

Thus,  if we  determine   AQ,   A and A    for a given  problem,   the  displacement 

and microrotation  fields  can be  calculated  from  (28.15). 

Another useful  decomposition can be  deduced  from  (28.11)  with 

f « J. ■ Q by selecting *,   and *?  as  the sum of   three special vector 

functions.    This has  the  form 

2X+ 2 
u - A,   + A„  - 1      "2       4(X+2u+ 

(28.16) +  27  x  B,   - T-4- V  x  B -1       2u+<   -        -J 

U+<)   y^       h        A0''        K(2P+IC)   ~-        ^1  +  *2; 

i • W  •  ■    +  B     -     W   <^  VV   •   B     +  77   •   B    + — V   x   A     +   ^   S   7x4 
I      YY      ?2      ?3      <(2u+<)   •-      ?3       —       -1      2  -      n        K    *       ~2 

where AQ,  A1, A«,   ^,   B.,  and B    satisfy 

72A0.O.   7^.0,   (1  -  ^2; fe)   V2)A2  - 0 

(28.17) 

These  results when  if ->■ « reduce  to the  correspo-ding decomposition  for  the 

indeterminate couple stress  theory obtained by Mindlin and Tiersten   [1962]. 
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29.     MICROPOLAR INFINITE SOLID SUBJECT TO 

CONCENTRATED FORCE AND CONCENTRATED COUPLE 

The problem of an Infinite solid subject  to a concentrated force F 

and  a concentrated  couple  C  at  the origin of  coordinates  x ■ 0  is  of  fund- 

amental  interest.     In  classical  theory,   this problem is  known as Kelvin's 

problem.    This  problem for   the static  case was   treated by Sandru   [1966], 

(i)    Concentrated Force.    Let F be a concentrated force acting at 

the  origin of  the  coordinates  x - 0.     We write 

(29.1) pf - F5(x) 

where  6(x)   is   the  Dirac delta function. 

The solution of   (28.12)     is given by 

(29.2) 

no(x) - - 4- /pf(Ov(7)dv(0 
«47i   ^ -   ~       r 

n(x) - - ^ MU) * ?(7)dv(p 

where 

1/2 
(29.3) r  |   [(x1 -  e,^2 +  (x2 - C2)2 +  (X3 -  CJ2] 

Using  (29.1) we  find 

(29.4) 

ä F • ?4> 

1 - - ^ r - v(±) 

where 

2        2 2  1/2 

(29.5) R  ;   (xj + x^ + xp 
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(29.6) 

From (28.13).   „  for the static case we get 

(A + 2y + <)72Ao m ^ I '  ify 

[Y(U +  <)V4 -  <(2u +  <)]A - ^7 ?   x  y(|) 

These equations  possess  the solutions 

1 F   •   x 
AO 8TT(A+2U+<)       R 

(29.7) 
^2 F A - I    AsSi I x (FR) + rsfesi v * tr (i - e"RM) ] 

where 

(29.8) I1 1 Tfe t;) 
(2u + <)< 

With  A    - 0,   (28.15)   gives  for  the  static  case 

5X-h6y+3< X 2X+2\i+K \  '  j{ 
y "  8TT(2u+<)(X+2m-<)     R       8Tt(2u+^)(A+2u+<)     D3      • K 

(29.9) +_I_rV.   {V  .   [i(e-R/%]l 

For  K - Y  « 0,   (29.9)1   reduces   to  the well-known solution of Kelvin's  problem, 

Love,   [1944,  p.   185].     The solution  of  this  problem  for  the  Indeterminate 

couple  stress   theory  Is obtained by  letting «:  - <*.     This  gives   the  result 

obtained by Mindlln and Tiersten  [1962]. 

(11)     Concentrated Couple.     Let M be  a concentrated  couple  acting at 

x » 0.    We write 

pi - M6(x) 
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In this  case, we express  the solution of  (27.12)  in the same way as  in  (28.2). 

Using (28.13)„  -  for  the static case we have 6 2,3 

[(a + ß + Y)V
2
  -  2<]AJ - -If 

(29.10) 

where 

[yiu ♦ <)v4 - <(2u + K)V2]A   • -n* 

(29.11) nj - - -^ M • v(|)   .  n* - - -^ M x V(i) 

Equations   (29.10)  have   the solutions 

(29.12) 

* 1 £2 M -R/L 
87T(2U+<)<   - - 47r(2u+<)<   ~ R 

where 

(29.13) 2   ,   a +  B +  Y 
1    '        2. 

Substituting  these  results  into  (28.15)   for  the  static case,  and with  AQ  = 0 

and  A > 0, we obtain 

1 M -R/Ä, V  x   [^ (1 - e  
R/fc)] 

"       4Tr(2u+<) 

(29.14) 
M 

These results may be used in  (20.23)   and  (20.24)   to obtain  the stress  and 

couple stress  fields. 

It is worth noting here that  the concentrated couple is  a fundamental 

problem which  is not  deduced as  the  limiting solution of  two equal parallel 
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forces directed In opposite sense.     We note that In micropolar elasticity, 

the concept of body couple Is  totally Independent of the  force and It  can 

exist even when the body force  Is  absent.    For micropolar elasticity,   there- 

fore,   force and moment singularities will have  totally  different natures. 

This Is  then expected to affect  uniqueness  theorems  for Infinite and for 

the finite  regions considerably. 
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SUMMARY 

The  theory of micropolar elasticity presented here should provide 

an adequate background  for pursuing analytical work and starting a badly 

needed experimental  program.     We believe  the  theory Is well-posed with  field 

equations,  boundary  and Initial  conditions.     Certain wide  classes  of  unique- 

ness  theorems have been proved though not presented here  (cf.   ErIngen  [1966a]). 

The  Important  implications of  the  theory are brought  to the surface especially 

In  connection with  the problems  In  the   field of wave  propagation.     Existence 

of additional waves over those existing In classical elasticity should be 

attractive to workers  In  the  field of  experimental wave propagation.     The 

linear  theory  Is simple enough  to lend  Itself  to the solution of non-trivial 

boundary  and  initial value problems.     With  the additional  internal  degrees 

of  freedom provided by the microrotatlon and spin Inertia,  it incorporates 

the problems Involving concentrated body  and surface  couples  into  the funda- 

mental singularities of  the  field. 

The field is  rather new and not  even partly explored.     Experimental 

works  are badly needed.    Nevertheless,   it  seems  to us   that  the  logical  founda- 

tion of  the  theory  is solid and promising  for the understanding of  the mechanics 

of micropolar solids. 
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POSSIBLE DIRECTIONS  FOR FUTURE RESEARCH 

The  theory of micropolar elasticity presented here is one of  the 

simplest extensions of  the  classical  theory of elasticity for  the  treat- 

ment  of materials with microstructure.     Extensions  of   this  theory  to 

micropolar fluids  and viscoelasticity exist   (cf.  Eringen   [1964],   (1966b], 

[196/]).    A nonlinear  theory  is  also contained in  the  more general   theory 

of microelasticl'v  given by Eringen and Suhubi   [1964a,b].     The  theory of 

micromorphic materials,  of which  the  theory  of microelasticity  is  a  repre- 

sentative  field for  the oriented solids,  possesses  promise  for entering 

the  granular and molecular world of materials  from  the   continuum side.     It 

should not be surprising if  such  a theory would be  in wide  use  for  the  full 

description of material properties  of  composites,   granular  and  fiberous 

solids.     The  connection of  these  theories  to  continuum dislocation   theory 

has  already been exhibited.     The  intimate  ties between   the  plasticity  theory 

and  continuum dislocations has  been  recognized  for  some   time by  seme  research 

workers  in  this  field   (cf.,  Kondo   [1962],   [1963],  Kröner   [1963],   Bilby   [1960], 

Bilby,   Gardner and  Stroh   [1967]).   Existing  theories  of  miccmechani-s,  multi- 

polar  theories,  and  the  continuum theory of  dislocations  have not been 

amalgamated into a unified structure as yet,  although  some  attempts  exist 

in this  direction.     Presently,  serious efforts  are being made  to bring some 

order  to the world of  the mlcrocontinuum.     The  field cf  micromorphic materials 

needs  and deserves  attention  from both  theoretical  and experimental workers. 

Especially,   the need  for  rational  experiments is  felt bad2y.     The   theory of 

micropolar elasticity  is  certainly  ready  for  such   -.   test       The  theory of 

micromorphic materials with   Its   logical  structure     nd wide  possible  applica- 

tions  opens new and promised   rich   lands  fcr  fut .""e workers. 
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LIST  OF SYMBOLS 

Acceleration vector 

a, , Third-order microdeformation rate  tensor 
kfcm 

b, „ Second-order microde formation  rate  tensor 
k£ 

c Wave speed 

c Micropolar elastic wave speeds 

CL    ,  C Spatial  and material  deformation tensors 

d Differential  operator as   in dx 

da Area element 

dv,  dV Spatial  and material volume elements 

d. „ Deformation  rate  tensor 

— i  (  ) Material derivative  operator 

e. . ,  E,,T Spatial  and material  strain  tensors 
kÄ.       KL 

f. Body force per unit  mass 

h Heat source  per unit mass 

i, .,  I Spatial  and material  microinertia tensors 

j,  J Jacobians 

I, Body  couple  per unit mass 

m. Couple   stress   tensor 

m,   ,,  m,   ,, Surface   couple 
(n)'     (n)k K 

n. ,   n Exterior normal vector  to  a surface 

q. ,   q Heat  flux vector directed  outward of   the surface 

r, ,   RK Spatial   and material  macrorotarion vectors 

r..,  K Spatial  and material macrc : .'. . ticn tensors 

M,   S Spatial   and material  surfaces 

l Time 
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wk 
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Stress  tensor 

Surface   traction 

Spatial   and material displacement vectors 

Spatial  and material volumes 

Velocity vector 

Vorticity vector 

Vorticity tensor 

Spatial   rectangular  coordinates 

Material  rectangular  coordinates 

a Micropolar elastic  constant 

a,  a. Microacceleration vector ••     k 

ß Micropolar elastic  constant 

Y Micropolar elastic  constant 

Vi o   »  ^t w Third-order microstrain tensors 
K ■m        KLM 

6     ,  6 Kronecker deltas  (»1 when   indices   take  the  same number, 
zero othervise) 

E Internal  energy density per  unit mass 

e. .,  E Second-order microstrain  tensors 

Sam Permutation symbol   (e^ -   t^ -  t^ ■ -t^ - -e^ -   -e^-1 

and zero  otherwise) 

n Entropy   density per unit mass 

6 Absolute  temperature 

•c Micropolar elastic  constant 

A, u Elastic   constants 

v, v Gyration vector 

v Gyration  tensor 

£,, i. Spatial   relative position  vector 

E, 5 Material   relative  position  vector 
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p Mass density 

0, o, Intrinsic spin vector 

$,   $ Spatial microrotation vector 

(>     ,   * Microdlsplacement tensors 

*,  <t Material microrotation vector 
K 

\»  ^vi. Spatial microdisplacement vectors 

Xi/»   Xuv Material microdisplacement  vectors 

i|/ Helmholtz free  energy 

iji. „,   f— Microdeformation  tensors 
iC Ar KL 

1, II,  III Invariants of   tensors 

7 Gradient operator 

2 
V Laplacian operator 

Q Wave operator 

Cartesian  tensor notation is  used where  indices   take  values   1,2,3, 

Repeated indices  indicate summation  over  the  range  1,2,3 unless other- 

wise  stated.     Indices  following a comma indicate partial differentiation, 

e.g.,   x.   K =   3x, /3X^.     A superposed  dot  indicates  time   rate with material 
3x 

point   fixed,   e.g.,  * ^ TT I x   ■ 

Indices enclosed within parenthesis   and brackets  indicate symmetric 

and  antisymmetric parts,  e.g., 

tiki)z    2  Uki + Ctk)   '  E[k£r    I (ek)l ~ Cik) 

To  convert  into expanded engineering notation use 

x1 -  x  ,   x2  - y   ,   x3 -  z 

u.   - u  ,  u_  « u   ,   u, ■  u I x'     2        y       3 z 

II xx x       12 xy xy 

where  o   ,   x     ,...   are  the  conventional stress  components  sometimes  used 

in engineering literature. 
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